Skip to main content Accessibility help
×
Home

Interaction between embryos and culture conditions during in vitro development of bovine early embryos

  • Yoshikazu Nagao (a1) (a2), Rumi Iijima (a2) and Kazuhiro Saeki (a3)

Summary

Various factors such as embryo density and substances in the medium can influence embryo development in vitro. These factors and the embryos probably interact with each other, however the interactions are not fully understood. To investigate the interactions, we examined the effects of the number of embryos, drop size, oxygen concentration and glucose and inorganic phosphate in the medium during protein-free culture of bovine IVM/IVF embryos. In Experiment 1, different numbers of embryos were cultured in a 50 μl drop of medium. The frequencies of blastocyst development in the groups with 25, 50 and 100 embryos per drop were higher than in the other groups. One, five and 25 embryos were cultured in different drop sizes (Experiment 2), a 50 µl drop of medium at different O2 concentrations (Experiment 3) and a 50 µl drop of medium excluding glucose and/or inorganic phosphate (Experiment 4). In Experiment 2, the size of the medium drops did not improve blastocyst development. In Experiment 3, the highest frequency of blastocyst development for one, five and 25 embryos per drop was obtained at 1, 2.5 and 5% O2, respectively. In Experiment 4, blastocyst development for one and five embryos per drop were improved in the medium excluded inorganic phosphate. These results indicate that there is a cooperative interaction among embryos during culture and that this interaction may be mediated by reduction of toxic factors in the medium. At low embryo density, reduced oxygen concentration or the exclusion of inorganic phosphate enhanced blastocyst development.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interaction between embryos and culture conditions during in vitro development of bovine early embryos
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interaction between embryos and culture conditions during in vitro development of bovine early embryos
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interaction between embryos and culture conditions during in vitro development of bovine early embryos
      Available formats
      ×

Copyright

Corresponding author

All correspondence to: Yoshikazu Nagao. University Farm, Faculty of Agriculture, Utsunomiya University, 443 Shimokomoriya, Mohka, Tochigi 321–4415, Japan. Tel/Fax: +81 285 84 1321. e-mail: ynagao@cc.utsunomiya-u.ac.jp

References

Hide All
Brackett, B.G. & Oliphant, G. (1975). Capacitation of rabbit spermatozoa in vitro. Biol. Reprod. 12, 260–74.
Carolan, C., Lonergan, P., Khatir, H. & Mermillod, P. (1996). In vitro production of bovine embryos using individual oocytes. Mol. Reprod. Dev. 45, 145–50.
Corps, A.N., Brigstock, D.R., Littlewood, C.J. & Brown, K.D. (1990). Receptors for epidermal growth factor and insulin-like growth factor-I on preimplantation trophoderm of the pig. Development 110, 221–7.
Fischer, B. & Bavister, B.D. (1993). Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99, 673–9.
Fujita, T., Umeki, H., Shimura, H., Kugumiya, K. & Shiga, K. (2006). Effects of group culture and ebbryo-culture conditioned medium on development of bovine embryos. J. Reprod. Dev. 52, 137–42.
Gardner, H.G. & Kaye, P.L. (1991). Insulin increases cell numbers and morphorogical development in mouse pre-implantation embryos in vitro. Reprod. Fertil. Dev. 3, 7991.
Gopichandran, N. & Leese, H.J. (2006). The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reproduction 131, 269–77.
Houghton, F.D., Thompson, J.G., Kennedy, C.J. & Leese, H.J. (1996). Oxygen consumption and energy metabolism of the early mouse embryo. Mol. Reprod. Dev. 44, 476–85.
Ikeda, K., Takahashi, Y. & Katagiri, S. (2000). Effects of medium change on the development of in vitro matured and fertilized bovine oocytes cultured in medium containing amino acids. J. Vet. Med. Sci. 62, 121–3.
Iritani, A. & Niwa, K. (1977). Capacitation of bull spermatozoa and fertilization in vitro of cattle follicular oocytes matured in culture. J. Reprod. Fertil. 50, 119–21.
Kane, M.T. (1983). Variability in different lots of commercial bovine serum albumin affects cell multiplication and hatching of rabbit blastocysts in culture. J. Reprod. Fertil. 69, 555–8.
Kane, M.T. & Headon, D.R. (1980). The role of commercial bovine serum albumin preparations in the culture of one-cell rabbit embryos to blastocysts. J. Reprod. Fertil. 60, 469–75.
Kato, Y. & Tusnoda, Y. (1994). Effects of the culture density of mouse zygotes on the development in vitro and in vivo. Theriogenology 41, 1315–22.
Keefer, C.L., Stice, S.L., Paprocki, A.M. & Golueke, P. (1990). In vitro culture of bovine IVM-IVF embryos: Cooperative interaction among embryos and the role of growth factors. Theriogenology 41, 1323–31.
Lane, M. & Gardner, K. (1992). Effects of incubation volume and embryo density on the development and viability of mouse embryos in vitro. Hum. Reprod. 17, 558–62.
Lee, E.S., Fukui, Y., Lee, B.C., Lim, J.M. & Hwang, W.S. (2004). Promoting effects of amino acids added to a chemically defined medium on blastocyst formation and blastomere proliferation of bovine embryos cultured in vitro. Anim. Reprod. Sci. 84, 257–67.
Mass, D.H.A., Storey, B.T. & Mastroianni, L. Jr. (1976). Oxygen tension in the oviduct of the rhesus monkey (Macaca mulatta). Fertil. Steril. 27, 1312–7.
Mastroianni, L. Jr. & Jones, R. (1965). Oxygen tension within the rabbit fallopian tube. J. Reprod. Fertil. 9, 99102.
Mills, R.M. & Brinster, R.L. (1967). Oxygen consumption of preimplantation mouse embryos. Exp. Cell. Res. 47, 337–44.
Mizushima, S. & Fukui, Y. (2000). Fertilizability and developmental capacity of bovine oocytes cultured individually in a chemically defined maturation medium. Theriogenology 55, 1431–45.
Nagao, Y., Saeki, K., Hoshi, M. & Kainuma, H. (1994). Effects of oxygen concentration and oviductal epithelial tissue on the development of in vitro matured and fertilized bovine oocytes cultured in protein-free medium. Theriogenology 41, 681–7.
Nagao, Y., Saeki, K., Hoshi, M. & Nagai, M. (1995). Early development of bovine embryos. J. Reprod. Dev. 41, j29j36.
Nagao, Y., Saeki, K., Hoshi, M., Takahashi, Y. & Kanagawa, H. (1995). Effects of water quality on in vitro fertilization and development of bovine oocytes in protein-free medium. Theriogenology 44, 433–44.
Nasr-Esfhani, M.H., Aitken, J.R. & Jonson, M.H. (1990). Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro and in vivo. Development 109, 501–7.
O'Neill, C. (1985). Partial characterisation of the embryo-derived platelet-activating factor in mice. J. Reprod. Fertil. 75, 375–80.
O'Neill, C. (1997). Evidence for the requirement of autodrine growth factors for development of mouse preimplantation embryo in vitro. Biol. Reprod. 56, 229–37.
Orsi, N.S. & Leese, H.J. (2004). Ammonium exposure and pyruvate affect the amino acid metabolism of bovine blastocyts in vitro. Reproduction 127, 131–40.
Paria, B.C. & Dey, S.K. (1990). Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc. Natl. Acad. Sci. USA. 87, 4761–5.
Petters, R.M., Johnson, B.H., Reed, M.L. & Archibong, A. E. (1990). Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro. J. Reprod. Fertil. 89, 269–75.
Pinyopummintr, T. & Bavister, B.D. (1991). In vitro-matured/in vitro-fertilized bovine oocytes can develop into morulae/blastocysts in chemically defined, protein-free culture media. Biol. Reprod. 45, 736–42.
Quinn, P. & Harlow, G.M. (1978). The effect of oxygen on the development of preimplantation mouse embryos in vitro. J. Exp. Zool. 206, 7380.
Rappolee, D.A, Brenner, C.A., Schultz, R., Mark, D., & Werb, Z. (1988). Developmental expression of PDGF, TGF-α and TGF-β genes in preimplantation mouse embryos. Science 241, 1823–5.
Rexroad, C.E. Jr. (1989). Co-culture of domestic animal embryos. Theirogenology 31, 105–14.
Ribarov, S.R. & Benov, L.C. (1981). Relationship between the hemolytic action of heavy metals and lipid peroxidation. Biochem. Biophys. Acta 640, 721–26.
Saeki, K., Hoshi, M., Leibfried-Rutledge, M.L. & First, N.L. (1990a). In vitro fertilization and development of bovine oocytes matured with commercially available follicle stimulating hormone. Theriogenology 34, 1035–9.
Saeki, K., Nagao, Y., Utaka, K. & Ishimori, H. (1990b). Maturation of bovine oocytes by co-culture with rabbit preovulatory follicle cells. Jpn. J. Zootech. Sci. 61, 8990.
Salahuddin, S., Ookutsu, S., Goto, K., Nakanishi, Y. & Nagata, Y. (1995). Effects of embryo density and co-culture of unfertilized oocytes on embryonic development of in-vitro fertilized mouse embryos. Hum. Reprod. 10, 2382–5.
Schini, S.A. & Bavister, B.D. (1988). Two-cell block to development of cultured hamster embryos is caused by inorganic phosphate and glucose. Biol. Reprod. 39, 1183–92.
Seshagiri, P.B. & Bavister, B.D. (1989). Phosphate is required for inhibition by glucose of development of hamster 8-cell embryos in vitro. Biol. Reprod. 40, 607–14.
Sirard, M.A., Parrish, J.J., Ware, C.B., Leibfried-Rutledge, M.L. & First, N.L. (1988). The culture of bovine oocytes to obtain developmentally competent embryos. Biol. Reprod. 39, 546–52.
Thompson, J.G.E., Simpson, A.C., Pugh, P.A., Donnelly, P.E. & Tervit, H.R. (1990). Effects of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J. Reprod. Fertil. 89, 573–8.
Watson, A., Hogan, A., Hahnel, A., Wiemer, K.E. & Schultz, G.A. (1992). Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo. Mol. Reprod. Dev. 31, 8795.
Yang, B.K., Yang, X. & Foote, R.H. (1993). Effects of growth factors on morula and blastocyst development of in vitro matured and in vitro fertilized bovine oocytes. Theriogenology 40, 521–30.

Keywords

Interaction between embryos and culture conditions during in vitro development of bovine early embryos

  • Yoshikazu Nagao (a1) (a2), Rumi Iijima (a2) and Kazuhiro Saeki (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed