Skip to main content Accessibility help
×
Home

Insulin–transferrin–selenium (ITS) improves maturation of porcine oocytes in vitro

  • Junhe Hu (a1) (a2), Xiaoling Ma (a1), Jian Chang Bao (a1), Wei Li (a1), De Cheng (a1), Zhimin Gao (a1), Anmin Lei (a1), Chunrong Yang (a1) and Huayan Wang (a3) (a1)...

Summary

The objective of this study was to determine if insulin–transferrin–selenium (ITS) promoted a nuclear and cytoplasmic maturation of porcine oocytes that better supports subsequent embryonic development. The rate of oocyte in vitro maturation (IVM) in an experimental group treated with hormones for 42 h was significantly increased compared with that in a control group without hormone treatment (47.8% vs. 11.7%, respectively, p < 0.05). Following reduction of the hormone treatment period from 42 h to 21 h, which included both the first 21 h period of hormones treatment (45.4%) and the second 21 h period of hormone treatment (44.8%), the rate of oocyte IVM was still higher than that of the control group (p < 0.05). To improve porcine oocyte nuclear maturation, 1% ITS was added to medium supplemented with hormones. The rate of nuclear maturation in the ITS-treated group was significantly higher than in the ITS-untreated group (78.6% vs. 54.4%, respectively, p < 0.05). ITS treatment also significantly reduced the per cent of oocytes with type I and type III cortical granule (CG) distribution, respectively, and significantly increased the per cent of oocytes with type II CG distribution (85.3%). These observations indicated that the synchronization rates of nuclear and ooplasmic maturation reached 67.04% (78.56 × 85.33%). In conclusion, the combination of modified Tissue Culture Medium-199 (mM199) + 10 ng/ml epidermal growth factor (EGF) + 10 IU/ml pregnant mare serum gonadotrophin (PMSG) + 10 IU/ml human chorion gonadotrophin (hCG) + 2.5 IU/ml follicle stimulating hormone (FSH) + 1% ITS is suitable for culturing porcine oocytes in vitro, and effectively enhances porcine oocyte nuclear and cytoplasmic maturation.

Copyright

Corresponding author

All correspondence to: Huayan Wang, Shaanxi Center for Stem Cell Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China. Tel: +86 029 87080069. Fax: +86 029 87080068. e-mail: hhwang101@163.com

References

Hide All
Cao, X., Zhou, P., Luo, H., Zhao, Y. & Shi, G. (2009). The effect of VEGF on the temporal-spatial change of alpha-tubulin and cortical granules of ovine oocytes matured in vitro. Anim. Reprod. Sci. 113, 236–50.
Cerri, R.L., Rutigliano, H.M., Lima, F.S., Araujo, D.B. & Santos, J.E. (2009). Effect of source of supplemental selenium on uterine health and embryo quality in high-producing dairy cows. Theriogenology 71, 1127–37.
De La Fuente, R., O'Brien, M.J. & Eppig, J.J. (1999). Epidermal growth factor enhances preimplantation developmental competence of maturing mouse oocytes. Hum. Reprod. 14, 3060–8.
Favetta, L.A., St John, E.J., King, W.A. & Betts, D.H. (2007). High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic. Biol. Med. 42, 1201–10.
Ferreira, E.M., Vireque, A.A., Adona, P.R., Meirelles, F.V., Ferriani, R.A. & Navarro, P.A. (2009). Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71, 836–48.
Funahashi, H. & Day, B.N. (1993). Effects of the duration of exposure to hormone supplements on cytoplasmic maturation of pig oocytes in vitro. J. Reprod. Fertil. 98, 179–85.
Funahashi, H., Cantley, T. & Day, B.N. (1994). Different hormonal requirements of pig oocyte–cumulus complexes during maturation in vitro. J. Reprod. Fertil. 101, 159–65.
Herrick, J.R., Behboodi, E., Memili, E., Blash, S., Echelard, Y. & Krisher, R.L. (2004). Effect of macromolecule supplementation during in vitro maturation of goat oocytes on developmental potential. Mol. Reprod. Dev. 69, 338–46.
Hosoe, M. & Shioya, Y. (1997). Distribution of cortical granules in bovine oocytes classified by cumulus complex. Zygote 5, 371–6.
Jeong, Y.W., Hossein, M.S., Bhandari, D.P., Kim, Y.W., Kim, J.H., Park, S.W., Lee, E., Park, S.M., Jeong, Y.I., Lee, J.Y., Kim, S. & Hwang, W.S. (2008). Effects of insulin–transferrin–selenium in defined and porcine follicular fluid supplemented IVM media on porcine IVF and SCNT embryo production. Anim. Reprod. Sci. 106, 1324.
Kawashima, I., Okazaki, T., Noma, N., Nishibori, M., Yamashita, Y. & Shimada, M. (2008). Sequential exposure of porcine cumulus cells to FSH and/or LH is critical for appropriate expression of steroidogenic and ovulation-related genes that impact oocyte maturation in vivo and in vitro. Reproduction 136, 921.
Kim, S., Lee, G.S., Lee, S.H., Kim, H.S., Jeong, Y.W., Kim, J.H., Kang, S.K., Lee, B.C. & Hwang, W.S. (2005). Embryotropic effect of insulin-like growth factor (IGF)-I and its receptor on development of porcine preimplantation embryos produced by in vitro fertilization and somatic cell nuclear transfer. Mol. Reprod. Dev. 72, 8897.
Lee, M.S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2005). The beneficial effects of insulin and metformin on in vitro developmental potential of porcine oocytes and embryos. Biol. Reprod. 73, 1264–8.
Liu, X.Y., Mal, S.F., Miao, D.Q., Liu, D.J., Bao, S. & Tan, J.H. (2005). Cortical granules behave differently in mouse oocytes matured under different conditions. Hum. Reprod. 20, 3402–13.
Lonergan, P., Rizos, D., Gutierrez-Adan, A., Fair, T. & Boland, M.P. (2003). Effect of culture environment on embryo quality and gene expression – experience from animal studies. Reprod. Biomed. Online 7, 657–63.
Rodrigues, B.A. & Rodrigues, J.L. (2003). Meiotic response of in vitro matured canine oocytes under different proteins and heterologous hormone supplementation. Reprod. Domest. Anim. 38, 5862.
Shimada, M., Nishibori, M., Isobe, N., Kawano, N. & Terada, T. (2003). Luteinizing hormone receptor formation in cumulus cells surrounding porcine oocytes and its role during meiotic maturation of porcine oocytes. Biol. Reprod. 68, 1142–9.
Tatemoto, H., Muto, N., Sunagawa, I., Shinjo, A. & Nakada, T. (2004). Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid. Biol. Reprod. 71, 1150–7.
Viana, K.S., Caldas-Bussiere, M.C., Matta, S.G., Faes, M.R., de Carvalho, C.S. & Quirino, C.R. (2007). Effect of sodium nitroprusside, a nitric oxide donor, on the in vitro maturation of bovine oocytes. Anim. Reprod. Sci. 102, 217–27.
Wang, W., Hosoe, M., Li, R. & Shioya, Y. (1997a). Development of the competence of bovine oocytes to release cortical granules and block polyspermy after meiotic maturation. Dev. Growth Differ. 39, 607–15.
Wang, W.H., Sun, Q.Y., Hosoe, M., Shioya, Y. & Day, B.N. (1997b). Quantified analysis of cortical granule distribution and exocytosis of porcine oocytes during meiotic maturation and activation. Biol. Reprod. 56, 1376–82.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed