Skip to main content Accessibility help

Generation of large pig and bovine blastocysts by culturing in human induced pluripotent stem cell medium

  • Qing-Shan Gao (a1), Long Jin (a1), Suo Li (a1), Hai-Ying Zhu (a1), Qing Guo (a1), Xiao-Chen Li (a1), Qing-Guo Jin (a1), Jin-Dan Kang (a1), Chang-Guo Yan (a1) and Xi-Jun Yin (a2)...


We investigated the effect of human induced pluripotent stem cell (hiPS) medium on porcine somatic cell nuclear transfer and bovine in vitro fertilized early blastocysts, in comparison with North Carolina State University (NCSU)-37 medium and in vitro culture (IVC)-II medium. After 2 days of culture, the diameter of the portion of the blastocyst that was extruded from the zona pellucid dramatically differed between porcine blastocysts cultured in hiPS medium and those cultured in NCSU-37 medium (221.47 ± 38.94 μm versus 481.87 ± 40.61 μm, P < 0.01). Moreover, the diameter of the portion of the blastocyst significantly differed between bovine blastocysts cultured in hiPS medium and those cultured in IVC-II medium (150.30 ± 29.49 μm versus 195.58 ± 41.59 μm, P < 0.01). Furthermore, the total number of cells per porcine and bovine blastocyst was more than two-fold higher in blastocysts cultured in hiPS medium than in those cultured in NCSU-37 medium (44.33 ± 5.28 and 143.33 ± 16.05, P < 0.01) or IVC-II medium (172.12 ± 45.08 and 604.83 ± 242.64, P < 0.01), respectively. These results indicate that hiPS medium markedly improves the quality of porcine and bovine blastocysts.


Corresponding author

All correspondence to: Xi-Jun Yin. Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133000, China. Tel: +86 0433 2435623. Fax: +86 0433 2435622. E-mail:


Hide All
Arias, M.E., Ross, P.J. & Felmer, R.N. (2013). Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT) embryos. Biol. Res. 46, 452–62.
Balasubramanian, S. & Rho, G.J. (2007). Effect of cysteamine supplementation of in vitro matured bovine oocytes on chilling sensitivity and development of embryos. Anim. Reprod. Sci. 98, 282–92.
Beckmann, L.S. & Day, B.N. (1993). Effects of media NaCl concentration and osmolarity on the culture of early-stage porcine embryos and the viability of embryos cultured in a selected superior medium. Theriogenology 39, 611–22.
Evans, M.J. & Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–6.
Fakruzzaman, M., Bang, J.I., Lee, K.L., Kim, S.S., Ha, A.N., Ghanem, N., Han, C.H., Cho, K.W., White, K.L. & Kong, I.K. (2013). Mitochondrial content and gene expression profiles in oocyte-derived embryos of cattle selected on the basis of brilliant cresyl blue staining. Anim. Reprod. Sci. 142, 1927.
Farin, C.E., Hasler, J.F., Martus, N.S. & Stokes, J.E. (1997). A comparison of Menezo's B2 and tissue culture medium-199 for in vitro production of bovine blastocysts. Theriogenology 48, 699709.
Gardner, D.K. & Lane, M. (1993). Amino acids and ammonium regulate mouse embryo development in culture. Biol. Reprod. 48, 377–85.
Ha, A.N., Lee, S.R., Jeon, J.S., Park, H.S., Lee, S.H., Jin, J.I., Sessions, B.R., Wang, Z., White, K.L. & Kong, I.K. (2014a). Development of a modified straw method for vitrification of in vitro-produced bovine blastocysts and various genes expression in between the methods. Cryobiology 68, 5764.
Ha, A.N., Park, H.S., Jin, J.I., Lee, S.H., Ko, D.H., Lee, D.S., White, K.L. & Kong, I.K. (2014b). Postthaw survival of in vitro-produced bovine blastocysts loaded onto the inner surface of a plastic vitrification straw. Theriogenology 81, 467–73.
Im, G.S., Lai, L., Liu, Z., Hao, Y., Wax, D., Bonk, A. & Prather, R.S. (2004). In vitro development of preimplantation porcine nuclear transfer embryos cultured in different media and gas atmospheres. Theriogenology 61, 1125–35.
Jeong, W.J., Cho, S.J., Lee, H.S., Deb, G.K., Lee, Y.S., Kwon, T.H. & Kong, I.K. (2009). Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology 72, 584–9.
Jin, J.X., Li, S., Hong, Y., Jin, L., Zhu, H.Y., Guo, Q., Gao, Q.S., Yan, C.G., Kang, J.D. & Yin, X.J. (2014). CUDC-101, a histone deacetylase inhibitor, improves the in vitro and in vivo developmental competence of somatic cell nuclear transfer pig embryos. Theriogenology 81, 572–8.
Jo, H.T., Bang, J.I., Kim, S.S., Choi, B.H., Jin, J.I., Kim, H.L., Jung, I.S., Suh, T.K., Ghanem, N., Wang, Z. & Kong, I.K. (2014). Production of female bovine embryos with sex-sorted sperm using intracytoplasmic sperm injection: efficiency and in vitro developmental competence. Theriogenology 81, 675–82 e671.
Kang, J.D., Li, S., Lu, Y., Wang, W., Liang, S., Liu, X., Jin, J.X., Hong, Y., Yan, C.G. & Yin, X.J. (2013). Valproic acid improved in vitro development of pig cloning embryos but did not improve survival of cloned pigs to adulthood. Theriogenology 79, 306–11 e301.
Lane, M., Gardner, D.K., Hasler, M.J. & Hasler, J.F. (2003). Use of G1.2/G2.2 media for commercial bovine embryo culture: equivalent development and pregnancy rates compared to co-culture. Theriogenology 60, 407–19.
Laowtammathron, C., Lorthongpanich, C., Ketudat-Cairns, M., Hochi, S. & Parnpai, R. (2005). Factors affecting cryosurvival of nuclear-transferred bovine and swamp buffalo blastocysts: effects of hatching stage, linoleic acid-albumin in IVC medium and Ficoll supplementation to vitrification solution. Theriogenology 64, 1185–96.
Lim, J.M., Okitsu, O., Okuda, K. & Niwa, K. (1994). Effects of fetal calf serum in culture medium on development of bovine oocytes matured and fertilized in vitro . Theriogenology 41, 1091–8.
Lim, K.T., Lee, B.C., Kang, S.K. & Hwang, W.S. (2003). Effects of protein source and energy substrates on the in vitro development of bovine embryos in a two-step culture system. J. Vet. Sci. 4, 73–8.
Liu, Z. & Foote, R.H. (1995). Effects of amino acids on the development of in-vitro matured/in-vitro fertilization bovine embryos in a simple protein-free medium. Hum. Reprod. 10, 2985–91.
Mao, J., Tessanne, K., Whitworth, K.M., Spate, L.D., Walters, E.M., Samuel, M.S., Murphy, C.N., Tracy, L., Zhao, J. & Prather, R.S. (2012). Effects of combined treatment of MG132 and scriptaid on early and term development of porcine somatic cell nuclear transfer embryos. Cell. Reprogram. 14, 385–9.
Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–8.
Petters, R.M. & Wells, K.D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 6173.
Rosenkranz, C., Dickie, M.B., Auer, W. & Holzmann, A. (1993). [Successful in vitro fertilization in cattle with transmigrated semen without heparin, hypotaurine and adrenaline supplements]. Gynakologisch-geburtshilfliche Rundschau 33, 208–9.
Sagirkaya, H., Misirlioglu, M., Kaya, A., First, N.L., Parrish, J.J. & Memili, E. (2007). Developmental potential of bovine oocytes cultured in different maturation and culture conditions. Anim. Reprod. Sci. 101, 225–40.
Suzuki, C. & Yoshioka, K. (2006). Effects of amino acid supplements and replacement of polyvinyl alcohol with bovine serum albumin in porcine zygote medium. Reprod. Fertil. Dev. 18, 789–95.
Takahashi, Y. & First, N.L. (1992). In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 37, 963–78.
Thouas, G. A., Korfiatis, N. A., French, A. J., Jones, G. M. & Trounson, A. O. (2001). Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. Biomed. Online 3, 25–9.
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. & Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147.
Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris, C.P., Becker, R.A. & Hearn, J.P. (1995). Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92, 7844–8.
Van Thuan, N., Harayama, H. & Miyake, M. (2002). Characteristics of preimplantational development of porcine parthenogenetic diploids relative to the existence of amino acids in vitro . Biol. Reprod. 67, 1688–98.
Wang, S., Panter, K.E., Holyoak, G.R., Molyneux, R.J., Liu, G., Evans, R.C. & Bunch, T.D. (1999). Development and viability of bovine preplacentation embryos treated with swainsonine in vitro . Anim. Reprod. Sci. 56, 1929.
Yamanaka, K., Sugimura, S., Wakai, T., Kawahara, M. & Sato, E. (2009). Difference in sensitivity to culture condition between in vitro fertilized and somatic cell nuclear transfer embryos in pigs. J. Reprod Dev. 55, 299304.
Yin, X.J., Tani, T., Yonemura, I., Kawakami, M., Miyamoto, K., Hasegawa, R., Kato, Y. & Tsunoda, Y. (2002). Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol. Reprod. 67, 442–6.
Youngs, C.R., Ford, S.P., McGinnis, L.K. & Anderson, L.H. (1993). Investigations into the control of litter size in swine: I. Comparative studies on in vitro development of Meishan and Yorkshire preimplantation embryos. J. Anim. Sci. 71, 1561–5.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed