Skip to main content Accessibility help
×
Home

Follicular interactions affect the in vitro development of isolated goat preantral follicles

  • Ana Beatriz Graça Duarte (a1), Roberta Nogueira Chaves (a2), Valdevane Rocha Araújo (a2), Juliana Jales Celestino (a2), Gerlane Modesto Silva (a2), Cláudio Afonso Pinho Lopes (a2), Líliam Mara Trevisan Tavares (a2), Cláudio Cabral Campelo (a2) and José Ricardo de Figueiredo (a2)...

Summary

The aim of this study was to evaluate the influence of the number of follicles per drop (one or three) and antral follicles on in vitro development of isolated goat preantral follicles. Preantral follicles were isolated through microdissection and distributed individually (control) or in groups of three follicles (treatment) in microdroplets of α-MEM with or without 1000 ng/ml follicle stimulating hormone (FSH) for Experiments 1 and 2, respectively. Experiment 3 was divided into four treatments according to the presence of one or three preantral follicles, associated or not with antral follicles. After culture, oocytes were retrieved from morphologically normal follicles and submitted to in vitro maturation (IVM) and live/dead fluorescent labelling. Results of Experiment 1 (basic medium without FSH) showed that culture of preantral follicles in groups enhances viability, growth and antrum formation after 12 days. However, in the presence of FSH (Experiment 2), only the recovery rate of fully grown oocytes for IVM was significantly affected by grouping of follicles. In Experiment 3, in general, co-culture of preantral follicles with an early antral follicle had a detrimental effect on viability, antrum formation and production of oocytes for IVM. In conclusion, the performance of in vitro culture of goat preantral follicles is affected by the number of follicles per drop, the presence of an antral follicle and FSH.

Copyright

Corresponding author

All correspondence to: Beatriz Duarte. Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais (LAMOFOPA), Programa de Pós-Graduação em Ciências Veterinárias (PPGCV), Faculdade de Veterinária (FAVET), Universidade Estadual do Ceará (UECE), Av. Paranjana 1700, Campus do Itaperi, Fortaleza–CE, CEP: 60740–930, Brazil. Tel: +55 85 3101 9852. Fax: +55 85 3101 9840. e-mail: beatriz_duarte@hotmail.com

References

Hide All
Adriaens, I., Cortvrindt, R. & Smitz, J. (2004). Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum. Reprod. 19, 398408.
Albertini, D.F., Combelles, C.M., Benecchi, E. & Carabatsos, M.J. (2001). Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121, 647–53.
Armstrong, D.G. & Webb, R. (1997). Ovarian follicular dominance: the role of intraovarian growth factors and novel proteins. Rev. Reprod. 2, 139–46.
Baker, S.J., Srsen, V., Lapping, R. & Spears, N. (2001). Combined effect of follicle–follicle interactions and declining follicle-stimulating hormone on murine follicle health in vitro. Biol. Reprod. 65, 1304–10.
Baker, S.J. & Spears, N. (1999). The role of intra-ovarian interactions in the regulation of follicle dominance. Hum. Reprod. 5, 155–65.
Cahill, L.P., Driancourt, M.A., Chamely, W.A & Findlay, J.K. (1985). Role of intrafollicular regulators and FSH in growth and development of large antral follicles in sheep. J. Reprod. Fertil. 75, 599607.
Cortvrindt, R., Smitz, J. & Van Steirteghem, A.C. (1997). Assessment of the need for follicle stimulating hormone in early preantral mouse follicle culture in vitro. Hum. Reprod. 12, 759–68.
Cortvrindt, R., Smitz, J. & Van Steirteghem, A.C. (1996). In vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Hum. Reprod. 11, 2656–66.
Crozet, N., Ahmed-Ali, M. & Dubos, M.P. (1995). Developmental competence of goat oocytes from follicles of different size categories following maturation, fertilization and culture in vitro. J. Reprod. Fertil. 103, 293–98.
Crozet, N., Dahirel, M. & Gall, L. (2000). Meiotic competence of in vitro grown goat oocytes J. Reprod. Fertil. 118, 367–73.
De Smedt, V., Crozet, N. & Gall, L. (1994). Morphological and functional changes accompanying the acquisition of meiotic competence in ovarian goat oocyte. J. Exp. Zool. 269, 128–39.
Demeestere, I., Centner, J., Gervy, C., Englert, Y. & Delbaere, A. (2005). Impact of various endocrine and paracrine factors on in vitro culture of preantral follicles in rodents. Reproduction. 130, 147–57.
Demeestere, I., Simon, P.Englert, Y. & Delbaere, A. (2003). Preliminary experience of ovarian tissue cryopreservation procedure: alternatives, perspectives and feasibility. Reprod. Biomed. Online 7, 572–79.
Eppig, J.J. (1991). Maintenance of meiotic arrest and the induction of oocyte maturation in mouse oocyte–granulosa cell complexes developed in vitro from preantral follicles. Biol. Reprod. 45, 824–30.
Eppig, J.J. & O'Brien, M.J. (1996). Development in vitro of mouse oocytes from primordial follicles. Biol. Reprod. 54, 197207.
Fukui, Y., Lee, E.S. & Araki, N. (1996). Effect of medium renewal during culture in two different culture systems on development to blastocysts from in vitro produced early bovine embryos. J. Anim. Sci. 74, 2752–58.
Gao, M., Wang, Y. & Wu, X. (2007). In vitro maturation of immature oocytes from preantral follicles in prepuberal mice. J. Reprod. Contracept. 18, 2532.
Gardner, D.K, Lane, M., Spitzer, A. & Batt, P.A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390400.
Gardner, D.K. & Lane, M. (1993). Amino acids and ammonium regulate mouse embryo development in culture. Biol. Reprod. 48, 377–85.
Gupta, P.S.P, Ramesh, H.S., Manjunatha, B.M., Nandi, S. & Ravindra, J.P. (2008). Production of buffalo embryos using oocytes from in vitro grown preantral follicles. Zygote 16, 5763.
Gupta, P.S.P., Nandi, S., Ravindranatha, B.M. & Sarma, P.V. (2002). In vitro culture of buffalo (Bubalus bubalis) preantral follicles. Theriogenology 57, 1839–54.
Gutierrez, C.G., Ralph, J.H., Telfer, E.E., Wilmut, I. & Webb, R. (2000). Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol. Reprod. 62, 1322–28.
Haidari, K., Salehnia, M. & Valojerdi, M.R. (2008). The effect of leukemia inhibitory factor and co-culture on the in vitro maturation and ultrastructure of vitrified isolated mouse preantral follicles. Fertil. Steril. 90, 2389–97.
Han, Z., Lan, G., Wu, Y., Han, D., Feng, W., Wang, J. & Tan, J. (2006). Interactive effects of granulosa cell apoptosis, follicle size, cumulus–oocyte complex morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system. Reproduction 132, 749–58.
Kreeger, P.K., Fernandes, N.N., Woodruff, T.K. & Shea, L.D. (2005). Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol. Reprod. 73, 942–50.
Wu, M.F., Huang, W.T., Tsay, C., Hsu, H.F., Liu, B.T., Chiou, C.M., Yen, S.C., Cheng, S.P. & Ju, J.C. (2002). The stage-dependent inhibitory effect of porcine follicular cells on the development of preantral follicles Anim. Reprod. Sci. 73, 7388.
Mao, J., Smith, M.F., Rucker, E.B., Wu, G.M., Mccauley, T.C., Cantley, T.C., Prather, R.S., Didion, B.A. & Day, B.N. (2004). Effect of epidermal growth factor and insulin-like growth factor I on porcine preantral follicular growth, antrum formation, and stimulation of granulosal cell proliferation and suppression of apoptosis in vitro. J. Anim. Sci. 82, 1967–75.
Mao, J., Wu, G., Smith, M.F., Mccauley, T.C, Cantley, T.C., Prather, R.S., Didion, B.A. & Day, B.N. (2002). Effects of culture medium, serum type, and various concentrations of follicle-stimulating hormone on porcine preantral follicular development and antrum formation in vitro. Biol. Reprod. 67, 11971203.
Metoki, T., Iwata, H., Itoh, M., Kasai, M., Takajyo, A., Suzuki, A., Kuwayama, T. & Monji, Y. (2008). Effects of follicular fluids on the growth of porcine preantral follicle and oocyte. Zygote 16, 239–47.
Mitchell, L.M., Kennedy, C.R. & Hartshorne, G.M. (2002). Effects of varying gonadotrophin dose and timing on antrum formation and ovulation efficiency of mouse follicles in vitro. Hum. Reprod. 17, 1181–88.
Nayudu, P.L. & Osborn, S.M. (1992). Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro. J. Reprod. Fert. 95, 349–62.
O'Brien, M.J., Pendola, J.K. & Eppig, J.J. (2003). A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their development competence. Biol. Reprod. 8, 1682–86.
Spears, N., De Bruin, J.P. & Gosden, R.G. (1996). The establishment of follicular dominance in co-cultured mouse ovarian follicles. J. Reprod. Fertil. 106, 16.
Spears, N., Baker, S., Srsen, V., Lapping, R., Mullan, J., Nelson, R. & Allison, V. (2002). Mouse ovarian follicles secrete factors affecting the growth and development of like-sized ovarian follicles in vitro. Biol. Reprod. 67, 1726–33.
Telfer, E.E. (1998). In vitro models for oocyte development. Theriogenology 49, 451–60.
Trounson, A.O., Pushett, D., Maclellan, L.J., Lewis, I. & Gardner, D.K. (1994). Current status of IVM/IVF and embryo culture in humans and farm animals. Theriogenology 4, 5766.
Wandji, S.A., Srsen, V., Nathanielsz, P.W., Eppig, J.J. & Fortune, J.E. (1997). Initiation of growth of baboon primordial follicles in vitro. Hum. Reprod. 12, 19932001.
Wang, Y., Rippstein, P.U. & Tsang, B.K. (2003). Role and gonadotrophic regulation of X-linked inhibitor of apoptosis protein expression during rat ovarian follicular development in vitro. Biol. Reprod. 68, 610–19.
Wu, J., Emery, B.R. & Carrell, D.T. (2001). In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biol. Reprod. 64, 375–81.
Zhou, H.M. & Zhang, Y. (2006). In vitro growth and maturation of caprine oocytes. Reprod. Dom. Anim. 41, 444–47.

Keywords

Follicular interactions affect the in vitro development of isolated goat preantral follicles

  • Ana Beatriz Graça Duarte (a1), Roberta Nogueira Chaves (a2), Valdevane Rocha Araújo (a2), Juliana Jales Celestino (a2), Gerlane Modesto Silva (a2), Cláudio Afonso Pinho Lopes (a2), Líliam Mara Trevisan Tavares (a2), Cláudio Cabral Campelo (a2) and José Ricardo de Figueiredo (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed