Skip to main content Accessibility help

Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos

  • W.S. Abd El Naby (a1), T.H. Hagos (a1), M.M. Hossain (a1), D. Salilew-Wondim (a1), A.Y. Gad (a1), F. Rings (a1), M.U. Cinar (a1), E. Tholen (a1), C. Looft (a1), K. Schellander (a1), M. Hoelker (a1) and D. Tesfaye (a2)...


MicroRNAs (miRNAs) are small endogenous molecules that are involved in a diverse of cellular process. However, little is known about their abundance in bovine oocytes and their surrounding cumulus cells during oocyte development. To elucidate this situation, we investigated the relative expression pattern of sets of miRNAs between bovine oocyte and the surrounding cumulus cells during in vitro maturation using miRNA polymerase chain reaction (PCR) array. Results revealed that a total of 47 and 51 miRNAs were highly abundant in immature and matured oocytes, respectively, compared with their surrounding cumulus cells. Furthermore, expression analysis of six miRNAs enriched in oocyte miR-205, miR-150, miR-122, miR-96, miR-146a and miR-146b-5p at different maturation times showed a dramatic decrease in abundance from 0 h to 22 h of maturation. The expression of the same miRNAs in preimplantation stage embryos was found to be highly abundant in early stages of embryo development and decreased after the 8-cell stage to the blastocyst stage following a typical maternal transcript profile. Similar results were obtained by localization of miR-205 in preimplantation stage embryos, in which signals were higher up to the 4-cell stage and reduced thereafter. miR-205 and miR-210 were localized in situ in ovarian follicles and revealed a spatio-temporal expression during follicular development. Interestingly, the presence or absence of oocytes or cumulus cells during maturation was found to affect the expression of miRNAs in each of the two cell types. Hence, our results showed the presence of distinct sets of miRNAs in oocytes or cumulus cells and the presence of their dynamic degradation during bovine oocyte maturation.


Corresponding author

All correspondence to: Dawit Tesfaye. Institute of Animal Science, Department of Animal Breeding and Husbandry, Endenicher Allee 15, 53115 Bonn, Germany. Tel: +49 228 732286. Fax: +49 228 732284. e-mail:


Hide All
Assidi, M., Dufort, I., Ali, A., Hamel, M., Algriany, O., Dielemann, S. & Sirard, M.A. (2008). Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol. Reprod. 79, 209–22.
Avazeri, N. & Lefevre, B. (1998). Phospholipase Cβ1, the PLC isoform present at the nuclear level, regulates the IP3-dependent Ca2+ oscillations responsible for mouse oocyte germinal vesicle breakdown. Biol. Cell 90, 125.
Avazeri, N., Courtot, A.M., Pesty, A., Duquenne, C. & Lefevre, B. (2000). Cytoplasmic and nuclear phospholipase C-beta 1 relocation: role in resumption of meiosis in the mouse oocyte. Mol. Biol. Cell 11, 4369–80.
Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol. 3, e85.
Buccione, R., Schroeder, A.C. & Eppig, J.J. (1990). Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod. 43, 543–7.
Carletti, M.Z. & Christenson, L.K. (2009). MicroRNA in the ovary and female reproductive tract. J. Anim. Sci. 87, E2938.
Creighton, C.J., Benham, A.L., Zhu, H., Khan, M.F., Reid, J.G., Nagaraja, A.K., Fountain, M.D., Dziadek, O., Han, D., Ma, L., Kim, J., Hawkins, S.M., Anderson, M.L., Matzuk, M.M. & Gunaratne, P.H. (2010). Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One 5, e9637.
Dalbies-Tran, R. & Mermillod, P. (2003). Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation. Biol. Reprod. 68, 252–61.
De La Fuente, R. (2006). Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev. Biol. 292, 112.
El-Sayed, A., Hoelker, M., Rings, F., Salilew, D., Jennen, D., Tholen, E., Sirard, M. A., Schellander, K. & Tesfaye, D. (2006). Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics 28, 8496.
Eppig, J.J. (1991). Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 13, 569–74.
Fair, T., Carter, F., Park, S., Evans, A.C. & Lonergan, P. (2007). Global gene expression analysis during bovine oocyte in vitro maturation. Theriogenology 68(Suppl 1), S917.
Fatehi, A.N., Zeinstra, E.C., Kooij, R.V., Colenbrander, B. & Bevers, M.M. (2002). Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology 57, 1347–55.
Gilchrist, R.B., Ritter, L.J. & Armstrong, D.T. (2001). Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. Dev. Biol. 240, 289–98.
Gilchrist, R.B., Ritter, L.J. & Armstrong, D.T. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82–83, 431–46.
Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J. & Schier, A.F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–9.
Goud, P.T., Goud, A.P., Van Oostveldt, P. & Dhont, M. (1999). Presence and dynamic redistribution of type I inositol 1,4,5-trisphosphate receptors in human oocytes and embryos during in-vitro maturation, fertilization and early cleavage divisions. Mol. Hum. Reprod. 5, 441451.
Grazul-Bilska, A.T., Reynolds, L.P. & Redmer, D.A. (1997). Gap junctions in the ovaries. Biol. Reprod. 57, 947–57.
Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. & Enright, A.J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D1404.
Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P. & Bartel, D.P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91105.
Hamel, M., Dufort, I., Robert, C., Gravel, C., Leveille, M.C., Leader, A. & Sirard, M.A. (2008). Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum. Reprod. 23, 1118–27.
Hong, X., Luense, L.J., McGinnis, L.K., Nothnick, W.B. & Christenson, L.K. (2008). Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 149, 6207–12.
Humphreys, D.T., Westman, B.J., Martin, D.I. & Preiss, T. (2005). MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102, 16961–6.
Hussein, T.S., Thompson, J.G. & Gilchrist, R.B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–21.
Jeong, K.H. & Kaiser, U.B. (2006). Gonadotropin-releasing hormone regulation of gonadotropin biosynthesis and secretion. In Knobil & Neill's Physiology of Reproduction (ed. Neill, J.D.), pp. 1635–726. Amsterdam: Elsevier.
Kraus, S., Naor, Z. & Seger, R. (2001). Intracellular signaling pathways mediated by the gonadotropin-releasing hormone (GnRH) receptor. Arch. Med. Res. 32, 499509.
Liu, H.C., Tang, Y., He, Z. & Rosenwaks, Z. (2010). Dicer is a key player in oocyte maturation. J. Assist. Reprod. Genet. 27, 571–80.
Liu, Z.H., Zhang, H., He, Y.P., Zhang, J.H. & Yue, L.M. (2006). [Cyclin G1 expressing in mouse ovary and relating to follicular development]. Sichuan Da Xue Xue Bao Yi Xue Ban 37, 893–7.
Lykke-Andersen, K., Gilchrist, M.J., Grabarek, J.B., Das, P., Miska, E. & Zernicka-Goetz, M. (2008). Maternal argonaute 2 is essential for early mouse development at the maternal-zygotic transition. Mol. Biol. Cell 19, 4383–92.
Matzuk, M.M., Burns, K.H., Viveiros, M.M. & Eppig, J.J. (2002). Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296, 2178–80.
McArdle, C.A., Franklin, J., Green, L. & Hislop, J.N. (2002). Signalling, cycling and desensitisation of gonadotrophin-releasing hormone receptors. J. Endocrinol. 173, 111.
Memili, E. & First, N.L. (1999). Control of gene expression at the onset of bovine embryonic development. Biol. Reprod. 61, 1198–207.
Memili, E., Peddinti, D., Shack, L.A., Nanduri, B., McCarthy, F., Sagirkaya, H. & Burgess, S.C. (2007). Bovine germinal vesicle oocyte and cumulus cell proteomics. Reproduction 133, 1107–20.
Miller, R.P. (2006). Gonadotrophin-releasing horrmone. In Handbook of Biologically Active Peptides (ed. Kastin, A.J.), pp. 637–44. USA: Acadamic Press.
Miyazaki, S., Yuzaki, M., Nakada, K., Shirakawa, H., Nakanishi, S., Nakade, S. & Mikoshiba, K. (1992). Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science 257, 251–5.
Mori, T., Amano, T. & Shimizu, H. (2000). Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biol. Reprod. 62, 913–9.
Murchison, E.P., Stein, P., Xuan, Z., Pan, H., Zhang, M.Q., Schultz, R.M. & Hannon, G.J. (2007). Critical roles for Dicer in the female germline. Genes Dev. 21, 682–93.
Nagaraja, A.K., Andreu-Vieyra, C., Franco, H.L., Ma, L., Chen, R., Han, D.Y., Zhu, H., Agno, J.E., Gunaratne, P.H., DeMayo, F.J. & Matzuk, M.M. (2008). Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol. Endocrinol. 22, 2336–52.
Niwa, R. & Slack, F.J. (2007). The evolution of animal microRNA function. Curr. Opin. Genet. Dev. 17, 145–50.
Obernosterer, G., Martinez, J. & Alenius, M. (2007). Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat. Protoc. 2, 1508–14.
Otsuka, M., Zheng, M., Hayashi, M., Lee, J.D., Yoshino, O., Lin, S. & Han, J. (2008). Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J. Clin. Invest. 118, 1944–54.
Peddinti, D., Memili, E. & Burgess, S.C. (2010). Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction. PLoS One 5, e11240.
Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E. & Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573–6.
Plasterk, R.H. (2006). MicroRNAs in animal development. Cell 124, 877–81.
Robert, C., Gagne, D., Bousquet, D., Barnes, F.L. & Sirard, M.A. (2001). Differential display and suppressive subtractive hybridization used to identify granulosa cell messenger rna associated with bovine oocyte developmental competence. Biol. Reprod. 64, 1812–20.
Rosenkrans, C.F., Jr. & First, N.L. (1994). Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J. Anim. Sci. 72, 434–7.
Roy, A. & Matzuk, M.M. (2006). Deconstructing mammalian reproduction: using knockouts to define fertility pathways. Reproduction 131, 207219.
Runft, L.L., Watras, J. & Jaffe, L.A. (1999). Calcium release at fertilization of Xenopus eggs requires type I IP(3) receptors, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta. Dev. Biol. 214, 399411.
Su, Y.Q., Sugiura, K., Woo, Y., Wigglesworth, K., Kamdar, S., Affourtit, J. & Eppig, J.J. (2007). Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev. Biol. 302, 104–17.
Sugiura, K., Pendola, F.L. & Eppig, J.J. (2005). Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev. Biol. 279, 2030.
Tam, O.H., Aravin, A.A., Stein, P., Girard, A., Murchison, E.P., Cheloufi, S., Hodges, E., Anger, M., Sachidanandam, R., Schultz, R.M. & Hannon, G.J. (2008). Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–8.
Tang, F., Kaneda, M., O'Carroll, D., Hajkova, P., Barton, S.C., Sun, Y.A., Lee, C., Tarakhovsky, A., Lao, K. & Surani, M.A. (2007). Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644–8.
Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M. & de Kruif, A. (2002). Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–24.
Telford, N.A., Watson, A.J. & Schultz, G.A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90100.
Tesfaye, D., Worku, D., Rings, F., Phatsara, C., Tholen, E., Schellander, K. & Hoelker, M. (2009). Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol. Reprod. Dev. 76, 665–77.
Tomek, W., Torner, H. & Kanitz, W. (2002). Comparative analysis of protein synthesis, transcription and cytoplasmic polyadenylation of mRNA during maturation of bovine oocytes in vitro. Reprod. Domest. Anim. 37, 8691.
Vallee, M., Gravel, C., Palin, M.F., Reghenas, H., Stothard, P., Wishart, D.S. & Sirard, M.A. (2005). Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species. Biol. Reprod. 73, 6371.
Vozzi, C., Formenton, A., Chanson, A., Senn, A., Sahli, R., Shaw, P., Nicod, P., Germond, M. & Haefliger, J.A. (2001). Involvement of connexin 43 in meiotic maturation of bovine oocytes. Reproduction 122, 619–28.
Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., Chiba, H., Kohara, Y., Kono, T., Nakano, T., Surani, M.A., Sakaki, Y. & Sasaki, H. (2008). Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–43.
Wongsrikeao, P., Kaneshige, Y., Ooki, R., Taniguchi, M., Agung, B., Nii, M. & Otoi, T. (2005). Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes. Reprod. Domest. Anim. 40, 166–70.
Xu, Z., Kopf, G.S. & Schultz, R.M. (1994). Involvement of inositol 1,4,5-trisphosphate-mediated Ca2+ release in early and late events of mouse egg activation. Development 120, 1851–9.
Zhang, L., Jiang, S., Wozniak, P.J., Yang, X. & Godke, R.A. (1995). Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40, 338–44.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed