Skip to main content Accessibility help

Effects of jacalin and follicle-stimulating hormone on in vitro goat primordial follicle activation, survival and gene expression

  • Regislane P. Ribeiro (a1), Antonia M.L.R. Portela (a1), Anderson W.B. Silva (a1), José J.N. Costa (a1), José R.S. Passos (a1), Ellen V. Cunha (a1), Glaucinete B. Souza (a1), Márcia V.A. Saraiva (a1), Mariana A. M. Donato (a2), Christina. A. Peixoto (a2), Robert van den Hurk (a3) and José R.V. Silva (a4)...


This study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 μg/ml – Experiment 1) or in MEM supplemented with jacalin (50 μg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 μg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression.


Corresponding author

All correspondence to: J.R.V. Silva. Biotechnology Nucleus of Sobral – NUBIS, Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041–040, Sobral, CE, Brazil. Tel:/Fax: +55 88 36118000. e-mail:


Hide All
Adriaens, I., Cortvrindt, R. & Smitz, J. (2004). Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum. Reprod. 19, 398408.
Albertini, D.F., Combelles, C.M., Benecchi, E. & Carabatsos, M.J. (2001). Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121, 647–53.
Andrade, E.R., Seneda, M.M. & Alfieri, A.A. (2005). Interactions of indole acetic acid with EGF and FSH in the culture of ovine preantral follicles. Theriogenology. 64, 1104–13.
Barros, V.R.P., Cavalcante, A.Y.P., Macedo, T.J.S., Barberino, R.S., Lins, T.L.B., Gouveia, B.B., Menezes, V.G., Queiroz, M.A.A., Araújo, V.R., Palheta, R.C. Jr, Leite, M.C.P. & Matos, M.H.T. (2013). Immunolocalization of melatonin and follicle-stimulating hormone receptors in caprine ovaries and their effects during in vitro development of isolated pre-antral follicles. Reprod. Dom. Anim. 48, 1025–33.
Blackmore, D.G., Baillie, L.R., Holt, J.E., Dierkx, L., Aitken, R.J. & Mclaughlin, E.A. (2004). Biosynthesis of the canine zona pellucida requires the integrated participation of both oocytes and granulosa cells. Biol. Reprod. 71, 661–8.
Bristol-Gould, S. & Woodruff, T.K. (2006). Folliculogenesis in the domestic cat (Felis catus). Theriogenology 66, 513.
Bruno, J.B., Matos, M.H.T., Chaves, R.N., Celestino, J.J.H., Saraiva, M.V.A., Lima-Verde, I.B., Araújo, V.R. & Figueiredo, J.R. (2009). Angiogenic factors and ovarian follicle development. Anim. Reprod. 6, 371–9.
Bunn-Moreno, M.M. & Campos-Neto, A. (1981). Lectin(s) extracted from seeds Artocarpus integrifolia (jackfruit): potent and selective stimulator(s) of distinct human T and B cell functions. J. Immunol. 127, 427–9.
Cecconi, S., Barboni, B., Coccia, M. & Mattioli, M. (1999). In vitro development of sheep preantral follicles. Biol. Reprod. 60, 594601.
Celestino, J.J.H., Matos, M.H.T., Saraiva, M.V.A. & Figueiredo, J.R. (2009). Regulation of ovarian folliculogenesis by Kit ligand and the c-Kit system in mammals. Anim. Reprod. 6, 431–9.
Cunha, E.V., Costa, J.J.N., Rossi, R.O.D.S., Silva, A.W.B., Passos, J.R.S., Portela, A. M.L.R., Pereira, D.C.S.T., Donato, M.A.M., Campello, C.C., Saraiva, M.V.A., Peixotos, C.A., Silva, J.R.V. & Santos, R.P. (2013). Phytohemagglutinin improves the development and ultrastructure of in vitro-cultured goat (Capra hircus) preantral follicles. Braz. J. Med. Biol. Res. 46, 245–52.
Dong, J., Albertini, D.F., Nishimori, K., Kumar, T.R., Lu, N. & Matzuk, M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–5.
Fatehi, A.N., Van den Hurk, R., Colenbrander, B., Daemen, A.J., Van Tol, H.T., Monteiro, R.M., Roelen, B.A. & Bevers, M.M. (2005). Expression of bone morphogenetic protein 2 (BMP-2), 4 (BMP-4) and BMP receptors in the bovine ovary but absence of effects of BMP-2 and BMP-4 during IVM on bovine oocyte nuclear maturation and subsequent embryo development. Theriogenology 63, 872–89.
Figueiredo, J.R., Rodrigues, A.P.R., Santos, R.R., Lopes, C. & Silva, J.R.V. (2006). Estado atual da biotécnica de manipulação de oócitos inclusos em folículos pré-antrais. Acta Sci. Vet. 34, 7184.
Frota, I.M.A., Leitão, C.C.F., Costa, J.J.N., van den Hurk, R., Brito, I.R., Saraiva, M.V.A., Figueiredo, J.R. & Silva, J.R.V. (2011). Effects of BMP-7 and FSH on the development of goat preantral follicles and levels of mRNA for FSH-R, BMP-7 and BMP receptors after culture. Anim. Reprod. 8, 2531.
Fu, L.L., Zhou, C.C., Yao, S., Yu, J.Y., Liu, B. & Bao, J.K. (2011). Plant lectins: targeting programmed cell death pathways as antitumor agents. Int. J. Biochem. Cell. Biol. 43, 1442–9.
Hussein, T.S., Froiland, D.A., Amato, F., Thompson, J.G. & Gilchrist, R.B. (2005). Oocytes prevent cumulus cell apoptosis by maintaining amorphogenic paracrine gradient of bone morphogenetic proteins. J. Cell. Sci. 118, 5257–68.
Hutt, K.J., McLaughlin, E.A. & Holland, M.K. (2006). Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol. Hum. Reprod. 12, 61–9.
Jeyaprakash, A.A., Jayashree, G., Mahanta, S.K., Swaminathan, C.P.K., Sekar, A.S. & Vijayan, M. (2005). Structural basis for the energetics of jacalin–sugar interactions: promiscuity versus specificity. J. Mol. Biol. 347, 181–8.
Jiménez-Movilla, M.J., Aviles, M., Gomez-Torres, M.J., Fernandez-Colom, P.J., Castells, M.T., Juan, J., Romeu, A. & Ballestal, J. (2004). Carbohydrate analysis of the zona pellucid and cortical granules of human oocytes by means of ultrastructural cytochemistry. Hum. Reprod. 19, 1842–55.
Jin, X., Han, C.S., Yu, F.Q., Wei, P., Hu, Z.Y. & Liu, Y.X. (2005). Anti-apoptotic action of stem cell factor on oocytes in primordial follicles and its signal transduction. Mol. Reprod. Dev. 70, 8290.
Kalich-Philosoph, L., Roness, H., Carmely, A., Fishel-Bartal, M., Ligumsky, H., Paglin, S., Wolf, I., Kanety, H., Sredni, B. & Meirow, D. (2013). Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci. Trans. Med. 5, 185–62.
Kim, J.Y. (2012). Control of ovarian primordial follicle activation. Clin. Exp. Reprod. 39, 10–4.
Knight, G.P. & Glister, C. (2006). Focus on TGF-β signalling. TGF-β superfamily members and ovarian follicle development. Reproduction 132, 191206.
Kristensen, S. G., Andersen, K., Clement, C. A., Franks, S., Hardy, K. & Andersen, C.Y. (2013). Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries. Mol. Hum. Reprod. doi:10.1093/molehr/gat089.
Li, W.W., Yu, J.Y., Xu, H.L. & Bao, J.K. (2011). Concanavalin A: a potential antineoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics. Biochem. Biophys. Res. Commun. 414, 282–6.
Lima, I.M.T., Celestino, J.H., Figueiredo, J.R. & Rodrigues, A.P.R. (2010). Role of bone morphogenetic protein 15 (BMP-15) and Kit ligand (KL) in the regulation of folliculogenesis in mammalian. Rev. Bras. Reprod. Anim. 34, 320.
Lima, I.M.T., Brito, I.R., Rodrigues, G.Q., Silva, C.M.G., Magalhães-Padilha, D., Lima, L.F., Celestino, J.J.H., Faustino, L.R., Campello, C.C., Silva, J.R.V., Figueiredo, J.R. & Rodrigues, A.P.R. (2011). Presence of c-kit mRNA in goat ovaries and improvement of in vitro preantral follicle survival and development with kit ligand. Mol. Cell. Endocrinol. 345, 3847.
Lima, L.F., Rocha, R.M.P., Alves, A.M.V.A., Saraiva, M.V.A., Araújo, V.R., Lima, I.M.T., Lopes, C.A.P., Báo, S.N., Campello, C.C., Rodrigues, A.P.R. & Figueiredo, J.R. (2013). Dynamized follicle-stimulating hormone affects the development of ovine preantral follicles cultured in vitro. Homeopathy. 102, 41–8.
Lis, H. & Sharon, N. (1986). Biological properties of lectins. In The Lectins: Properties, Functions and Applications in Biology and Medicine pp. 265–85. London: Academic Press.
Livak, K.J. & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–8.
Maga, G. & Hubscher, U. (2003). Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell. Sci. 116, 3051–60.
Magalhães, D.M., Araújo, V.R. & Verde, I.B.L. (2009). Different follicle stimulating hormone (FSH) sources influence caprine preantral follicle viability and development in vitro. Pesq. Vet. Bras. 46, 378–86.
Magalhães-Padilha, D.M., Fonseca, G.R., Haag, K.T., Wischral, A., Gastal, M.O., Jones, K.L., Geisler-Lee, J., Figueiredo, J.R. & Gastal, E.L. (2012). Long-term in vitro culture of ovarian cortical tissue in goats: effects of FSH and IGF-I on preantral follicular development and FSH and IGF-I receptor mRNA expression. Cell Tissue Res. 350, 503–11.
Mao, J., Wu, G., Smith, M.F., McCauley, T.C., Cantley, T.C., Prather, R.S., Didion, B.A. & Day, B.N. (2002). Effects of culture medium, serum type, and various concentrations of follicle-stimulating hormone on porcine preantral follicular development and antrum formation in vitro. Biol. Reprod. 67, 1197–203.
Markholt, S., Grøndahl, M.L., Ernst, E.H., Andersen, C.Y., Ernst, E. & Lykke-Hartmann, K. (2012). Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction. Mol. Hum. Reprod. 18, 96110.
Matos, M.H.T., Lima-Verde, I.B., Luque, M.C.A., Maia-Jr, J.E., Silva, J.R.V., Celestino, J.J.H., Martins, F.S., Báo, S.N., Lucci, C.M. & Figueiredo, J.R. (2007a). Essential role of follicle stimulating hormone in the maintenance of caprine preantral follicle viability in vitro. Zygote 15, 173–82.
Matos, M.H.T., van den Hurk, R., Lima-Verde, I.B., Luque, M.C.A., Santos, K.D.B., Martins, F.S., Báo, S.N., Lucci, C.M. & Figueiredo, J.R. (2007d). Effects of fibroblast growth factor-2 on the in vitro culture of caprine preantral follicles. Cells Tissues Organs 18, 112–20.
McGee, E., Spears, N., Minami, S., Hsu, S.Y., Chun, S.Y., Billig, H. & Hsueh, A.J.W. (1997). Preantral ovarian follicles in serum-free culture: suppression of apoptosis after activation of the cyclic guanosine 3′-5′-monophosphate pathway and stimulation of growth and differentiation by follicle-stimulating hormone. Endocrinology 138, 2417–24.
McMahon, H.E., Hashimoto, O., Mellon, P.L. & Shimasaki, S. (2008). Oocyte-specific overexpression of mouse bone morphogenetic protein-15 leads to accelerated folliculogenesis and an early onset of acyclicity in transgenic mice. Endocrinology 149, 2807–15.
McNatty, K.P., Juengel, J.L., Reader, K.L., Lun, S., Myllymaa, S., Lawrence, S.B., Western, A., Meerasahib, M.F., Mottershead, D.G. & Groome, N. (2005a). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. Reproduction 129, 473–80.
Misquith, S.P., Rani, , & G. Surolia, A. (1994). Carbohydrate binding specificity of the B-cell maturation mitogen from Artocarpus integrifolia seeds. J. Biol. Chem. 269, 30393–401.
Muskhelishvili, L., Wingard, S.K. & Latendresse, J.R. (2005). Proliferating cell nuclear antigen a marker for ovarian follicle counts. Toxicol. Pathol. 33, 365–8.
Myllymaa, S., Pasternack, A., Mottershead, D.G., Poutanen, M., Pulkki, M.M., Pelliniemi, L.J., Ritvos, O. & Laitinen, M.P.E. (2010). Inhibition of oocyte growth factors in vivo modulates ovarian folliculogenesis in neonatal and immature mice. Reproduction 139, 587–98.
Oktay, K., Schenken, R.S. & Nelson, J.F. (1995). Proliferating cell nuclear antigen marks the initiation of follicular growth in the rat. Biol. Reprod. 53, 295301.
Orisaka, M., Tajima, K., Tsang, B.K. & Kotsuji, F. (2009). Oocyte–granulosa–theca cell interactions during preantral follicular development. J. Ovar. Res. 2, 17.
Otsuka, F., McTavish, K. & Shimasaki, S. (2011). Integral role of GDF-9 and BMP-15 in ovarian function. Mol. Reprod. Dev. 78, 921.
Parrott, J.A. & Skinner, M.K. (1999). Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 40, 262–71.
Peng, X., Yang, M., Wang, L., Tong, C. & Guo, Z. (2010). In vitro culture of sheep lamb ovarian cortical tissue in a sequential culture medium. J. Assist. Reprod. Genet. 27, 247–57.
Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 2002–7.
Roque-Barreira, M.C. & Campos-Neto, A. (1985). Jacalin: an IgA-binding lectin. J. Immunol. 134, 1740–3.
Saraiva, M.V.A, Celestino, J.J.H. & Chaves, R.N. (2008). Influence of different concentrations of LH and FSH on in vitro caprine primordial ovarian follicle development. Small Rum. Res. 78, 8795.
Saraiva, M.V., Celestino, J.J., Araújo, V.R., Chaves, R.N., Almeida, A.P., Lima-Verde, I.B., Duarte, A.B., Silva, G.M., Martins, F.S., Bruno, J.B., Matos, M.H., Campello, C.C., Silva, J.R. & Figueiredo, J.R. (2011). Expression of follicle-stimulating hormone receptor (FSHR) in goat ovarian follicles and the impact of sequential culture medium on in vitro development of caprine preantral follicles. Zygote 19, 205–14.
Saxon, A., Tsui, F. & Martinez-Maza, O. (1987). Jacalin, an IgA-binding lectin, inhibits differentiation of human B cells by both a direct effect and by activating T-supressor cells. Cell. Immunol. 104, 134–41.
Sell, A.M. & Costa, C.P. (2002). Efeito inflamatório local induzido pelas lectinas PHA, WGA e jacalina. Arq. Ciênc. Saúde Unipar 6, 4751.
Sharma, V. & Surolia, A. (1997). Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. J. Mol. Biol. 267, 433–45.
Silva, J.R.V., Báo, S.N., Lucci, C.M., Carvalho, F.C.A., Andrade, E.R., Ferreira, M.A.L. & Figueiredo, J.R. (2001) Morphological and ultrastructural changes occurring during degeneration of goat preantral follicles preserved in vitro. Anim. Reprod. Sci. 66, 209–23.
Silva, J.R.V., Van den Hurk, R., Matos, M.H.T., Santos, R.R., Pessoa, C., Moraes, M.O. & Figueiredo, J.R. (2004). Influences of FSH and EGF on primordial follicles during in vitro culture of caprine ovarian cortical tissue. Theriogenology 61, 1691–704.
Songsasen, N., Fickes, A., Pukazhenthi, B.S. & Wildt, D.E. (2009). Follicular morphology, oocyte diameter and localization of fibroblast growth factors in the domestic dog ovary. Reprod. Domest. Anim. 44, 6570.
Stulnig, T., Schuweiger, M. & Hirsch-Kauffmann, M. (1993). Duchenne muscular dystrophy: lack of differences in the expression of endogenous carbohydrate- and heparin-binding proteins (lectins) in culture fibroblast. Eur. J. Cell Biol. 62, 173–81.
Tse, A.C-K. & Ge, W. (2010). Spatial localization of EGF family ligands and receptors in the zebrafish ovarian follicle and their expression profiles during folliculogenesis. Gen. Comp. Endoc. 167, 397407.
van den Hurk, R. & Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63, 1717–51.
Velasquez, E.V., Ríos, M., Ortiz, M.E., Lizama, C., Nuñez, E., Abramovich, D., Orge, F., Oliva, B., Orellana, R., Villalon, M., Moreno, R.D., Tesone, M., Rokka, A., Corthals, G., Croxatto, H.B., Parborell, F. & Owen, G.I. (2013). Concanavalin-A induces granulosa cell death and inhibits FSH-mediated follicular growth and ovarian maturation in female rats. Endocrinology 154, 1885–96.
Wandji, S.A., Srsen, V., Voss, A.K., Eppig, J.J. & Fortune, J.E. (1996). Initiation in vitro of growth of bovine primordial follicles. Biol Reprod. 55, 942–8.
Wang, C. & Roy, S.K. (2006). Expression of growth differentiation factor 9 in the oocytes is essential for the development of primordial follicles in the hamster ovary. Endocrinology 147, 1725–34.
Yagi, M., Campos-Neto, A. & Gollahon, K. (1995). Morphological and biochemical changes in a hematopoietic cell line induced by jacalin, a lectin derived from Artocarpus integrifolia. Biochem. Biophysical Res. Comm. 209, 263–70.
Young, N.M., Johnston, R.A.Z. & Watson, D.C. (1991). The amino acid sequences of jacalin and the Madura pomira agglutinin. Fed. Eur. Biochem. Soc. 282, 382–4.


Effects of jacalin and follicle-stimulating hormone on in vitro goat primordial follicle activation, survival and gene expression

  • Regislane P. Ribeiro (a1), Antonia M.L.R. Portela (a1), Anderson W.B. Silva (a1), José J.N. Costa (a1), José R.S. Passos (a1), Ellen V. Cunha (a1), Glaucinete B. Souza (a1), Márcia V.A. Saraiva (a1), Mariana A. M. Donato (a2), Christina. A. Peixoto (a2), Robert van den Hurk (a3) and José R.V. Silva (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed