Skip to main content Accessibility help
×
Home

Effect of volume of oocyte cytoplasm on embryo development after parthenogenetic activation, intracytoplasmic sperm injection, or somatic cell nuclear transfer

  • Wakayama Sayaka (a1), Kishigami Satoshi (a1), Nguyen Van Thuan (a1), Ohta Hiroshi (a1), Hikichi Takafusa (a1), Mizutani Eiji (a1), Bui Hong Thuy (a1), Miyake Masashi (a2) and Wakayama Teruhiko (a3) (a1)...

Summary

Animal cloning methods are now well described and are becoming routine. Yet, the frequency at which live cloned offspring are produced remains below 5%, irrespective of the nuclear donor species or cell type. One possible explanation is that the reprogramming factor(s) of each oocyte is insufficient or not properly adapted for the receipt of a somatic cell nucleus, because it is naturally prepared only for the receipt of a gamete. Here, we have increased the oocyte volume by oocyte fusion and examined its subsequent development. We constructed oocytes with volumes two to nine times greater than the normal volume by the electrofusion or mechanical fusion of intact and enucleated oocytes. We examined their in vitro and in vivo developmental potential after parthenogenetic activation, intracytoplasmic sperm injection (ICSI) and somatic cell nuclear transfer (SCNT). When the fused oocytes were activated parthenogenetically, most developed to morulae or blastocysts, regardless of their original size. Diploid fused oocytes were fertilized by ICSI and developed normally and after embryo transfer, we obtained 12 (4–15%) healthy and fertile offspring. However, enucleated fused oocytes could not support the development of mice cloned by SCNT. These results suggest that double fused oocytes have normal potential for development after fertilization, but oocytes with extra cytoplasm do not have enhanced reprogramming potential.

Copyright

Corresponding author

All correspondence to: Wakayama Teruhiko. Laboratory for Genomic Reprogramming, Center for Developmental Biology, RIKEN Kobe, 2–2–3 Minatojima-minamimachi Chuo-ku, Kobe 650–0047, Japan. Tel: +81 78 306 3049. Fax: +81 78 306 0101. e-mail teru@cdb.riken.jp

References

Hide All
Austin, C.R. (1960). Anomalies of fertilization leading to triploidy. J. Cell. Comp. Physiol. 56 (Suppl 1), 115.
Austin, C.R. & Braden, A.W. (1954). Anomalies in rat, mouse and rabbit eggs. Aust. J. Biol. Sci. 7, 537–42.
Balakier, H., Bouman, D., Sojecki, A., Librach, C. & Squire, J.A. (2002). Morphological and cytogenetic analysis of human giant oocytes and giant embryos. Hum. Reprod. 17, 2394–401.
Boiani, M., Eckardt, S., Leu, N.A., Scholer, H.R. & McLaughlin, K.J. (2003). Pluripotency deficit in clones overcome by clone–clone aggregation: epigenetic complementation? EMBO J. 22, 5304–12.
Bos-Mikich, A., Whittingham, D.G. & Jones, K.T. (1997). Meiotic and mitotic Ca2+ oscillations affect cell composition in resulting blastocysts. Dev. Biol. 182, 172–9.
Chatot, C.L., Lewis, J.L., Torres, I. & Ziomek, C.A. (1990). Development of 1-cell embryos from different strains of mice in CZB medium. Biol. Reprod. 42, 432–40.
Clarke, H.J. & Masui, Y. (1987). Dose-dependent relationship between oocyte cytoplasmic volume and transformation of sperm nuclei to metaphase chromosomes. J. Cell. Biol. 104, 831–40.
Cohen, J., Scott, R., Alikani, M., Schimmel, T., Munne, S., Levron, J., Wu, L., Brenner, C., Warner, C. & Willadsen, S. (1998). Ooplasmic transfer in mature human oocytes. Mol. Hum. Reprod. 4, 269–80.
Eglitis, M.A. (1980). Formation of tetraploid mouse blastocysts following blastomere fusion with polyethylene glycol. J. Exp. Zool. 213, 309–13.
Fulka, H. (2004). Distribution of mitochondria in reconstructed mouse oocytes. Reproduction 127, 195200.
FulkaJ., Jr. J., Jr., Flechon, B. & Flechon, J.E. (1989). Fusion of mammalian oocytes: SEM observations of surface changes. Reprod. Nutr. Dev. 29, 551–7.
FulkaJ., Jr. J., Jr., Notarianni, E., Passoni, L. & Moor, R.M. (1993). Early changes in embryonic nuclei fused to chemically enucleated mouse oocytes. Int. J. Dev. Biol. 37, 433–9.
FulkaJ., Jr. J., Jr., Kalab, P., First, N.L. & Moor, R.M. (1997). Damaged chromatin does not prevent the exit from metaphase I in fused mouse oocytes. Hum. Reprod. 12, 2473–6.
Funaki, K. & Mikamo, K. (1980). Giant diploid oocytes as a cause of digynic triploidy in mammals. Cytogenet. Cell. Genet. 28, 158–68.
Gordo, A. C., Rodrigues, P., Kurokawa, M., Jellerette, T., Exley, G. E., Warner, C. & Fissore, R. (2002). Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol. Reprod. 66, 1828–37.
Gulyas, B.J., Wood, M. & Whittingham, D. G. (1984). Fusion of oocytes and development of oocyte fusion products in the mouse. Dev. Biol. 101, 246–50.
Henery, C.C. & Kaufman, M.H. (1993). The cleavage rate of digynic triploid mouse embryos during the preimplantation period. Mol. Reprod. Dev. 34, 272–9.
Karnikova, L., Jacquet, P. & FulkaJ., Jr. J., Jr. (2000). Preimplantation development of giant triploid zygotes in the mouse. Folia Biol. (Praha), 46, 83–6.
Kimura, Y. & Yanagimachi, R. (1995). Intracytoplasmic sperm injection in the mouse. Biol. Reprod. 52, 709–20.
Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N.V., Wakayama, S., Bui, H.T. & Wakayama, T. (2006a). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 340, 183–9.
Kishigami, S., Wakayama, S., Thuan, N.V., Ohta, H., Mizutani, E., Hikichi, T., Bui, H.T., Balbach, S., Ogura, A., Boiani, M. & Wakayama, T. (2006b). Production of cloned mice by somatic cell nuclear transfer. Nature Protocols 1, 125–38.
Kishigami, S., Bui, H.T., Wakayama, S., Tokunaga, K., Van Thuan, N., Hikichi, T., Mizutani, E., Ohta, H., Suetsugu, R., Sata, T. & Wakayama, T. (2007). Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. J. Reprod. Dev. 53, 165–70.
Krukowska, A., Wielkopolska, E., Czolowska, R., Maleszewski, M. & Tarkowski, A.K. (1998). Mouse oocytes and parthenogenetic eggs lose the ability to be penetrated by spermatozoa after fusion with zygotes. Zygote 6, 321–8.
Kusakabe, H., Szczygiel, M.A., Whittingham, D.G. & Yanagimachi, R. (2001). Maintenance of genetic integrity in frozen and freeze-dried mouse spermatozoa. Proc. Natl. Acad. Sci. U S A 98, 13501–6.
McGrath, J. & Solter, D. (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–83.
Mizutani, E., Ohta, H., Kishigami, S., Van Thuan, N., Hikichi, T., Wakayama, S., Kosaka, M., Sato, E. & Wakayama, T. (2006). Developmental ability of cloned embryos from neural stem cells. Reproduction 132, 849–57.
Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. (2003). Manipulating the Mouse Embryo; A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
Naito, K., Toyoda, Y. & Yanagimachi, R. (1992). Production of normal mice from oocytes fertilized and developed without zonae pellucidae. Hum. Reprod. 7, 281–5.
Ogura, A., Ogonuki, N., Takano, K. & Inoue, K. (2001). Microinsemination, nuclear transfer and cytoplasmic transfer: the application of new reproductive engineering techniques to mouse genetics. Mamm. Genome 12, 803–12.
Peura, T.T., Lewis, I. M. & Trounson, A.O. (1998). The effect of recipient oocyte volume on nuclear transfer in cattle. Mol. Reprod. Dev. 50, 185–91.
Ribas, R., Oback, B., Ritchie, W., Chebotareva, T., Ferrier, P., Clarke, C., Taylor, J., Gallagher, E.J., Mauricio, A.C., Sousa, M. & Wilmut, I. (2005). Development of a zona-free method of nuclear transfer in the mouse. Cloning Stem Cells 7, 126–38.
Rosenbusch, B. & Schneider, M. (1998). Maturation of a binuclear oocyte from the germinal vesicle stage to metaphase II: formation of two polar bodies and two haploid chromosome sets. Hum. Reprod. 13, 1653–5.
Sherard, J., Bean, C., Bove, B., DelDucaV., Jr. V., Jr., Esterly, K.L., Karcsh, H.J., Munshi, G., Reamer, J. F., Suazo, G., Wilmoth, D. et al. (1986). Long survival in a 69,XXY triploid male. Am. J. Med. Genet. 25, 307–12.
Snow, M.H. (1975). Embryonic development of tetraploid mice during the second half of gestation. J. Embryol Exp. Morphol. 34, 707–21.
Soupart, P. (1980). Initiation of mouse embryonic development by oocyte fusion. Arch. Androl. 5, 55–7.
Surani, M.A., Barton, S.C. & Norris, M.L. (1984). Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–50.
Suzuki, H., Togashi, M., Adachi, J. & Toyoda, Y. (1995). Developmental ability of zona-free mouse embryos is influenced by cell association at the 4-cell stage. Biol. Reprod. 53, 7883.
Tarkowski, A.K. & Balakier, H. (1980). Nucleo-cytoplasmic interactions in cell hybrids between mouse oocytes, blastomeres and somatic cells. J. Embryol. Exp. Morphol. 55, 319–30.
Tecirlioglu, R.T., French, A.J., Lewis, I.M., Vajta, G., Korfiatis, N.A., Hall, V.J., Ruddock, N.T., Cooney, M.A. & Trounson, A.O. (2004). Birth of a cloned calf derived from a vitrified hand-made cloned embryo. Reprod. Fertil. Dev. 15, 361–6.
Tesarik, J. & Testart, J. (1994). Treatment of sperm-injected human oocytes with Ca2+ ionophore supports the development of Ca2+ oscillations. Biol. Reprod. 51, 385–91.
Tesarik, J., Nagy, Z.P., Mendoza, C. & Greco, E. (2000). Chemically and mechanically induced membrane fusion: nonactivating methods for nuclear transfer in mature human oocytes. Hum. Reprod. 15, 1149–54.
Toyoda, Y., Yokoyama, M. & Hoshi, T. (1971). Studies on the fertilization of mouse eggs in vitro. Jpn J. Anim. Reprod. 16, 152–7.
Vajta, G., Lewis, I.M., Trounson, A.O., Purup, S., Maddox-Hyttel, P., Schmidt, M., Pedersen, H.G., Greve, T. & Callesen, H. (2003). Handmade somatic cell cloning in cattle: analysis of factors contributing to high efficiency in vitro. Biol. Reprod. 68, 571–8.
Van Thuan, N., Wakayama, S., Kishigami, S. & Wakayama, T. (2006). Donor centrosome regulation of initial spindle formation in mouse somatic cell nuclear transfer: roles of gamma-tubulin and nuclear mitotic apparatus protein 1. Biol. Reprod. 74, 777–87.
Vassetzky, S. G. & Sekirina, G. G. (1985). Induced fusion of female gametes and embryonic cells. Cell Differ. 16, 7782.
Wakayama, S., Mizutani, E., Kishigami, S., Thuan, N.V., Ohta, H., Hikichi, T., Bui, H.T., Miyake, M. & Wakayama, T. (2005). Mice cloned by nuclear transfer from somatic and ntES cells derived from the same individuals. J. Reprod. Dev. 51, 765–72.
Wakayama, T. (2007). Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency? J. Reprod. Dev. 53, 1326.
Wakayama, T. & Yanagimachi, R. (1998). Fertilisability and developmental ability of mouse oocytes with reduced amounts of cytoplasm. Zygote 6, 341–6.
Wakayama, T. & Yanagimachi, R. (1999). Cloning of male mice from adult tail-tip cells. Nat. Genet. 22, 127–8.
Wakayama, T. & Yanagimachi, R. (2001a). Effect of cytokinesis inhibitors, DMSO and the timing of oocyte activation on mouse cloning using cumulus cell nuclei. Reproduction 122, 4960.
Wakayama, T. & Yanagimachi, R. (2001b). Mouse cloning with nucleus donor cells of different age and type. Mol. Reprod. Dev. 58, 376–83.
Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–74.
Wakayama, T., Tabar, V., Rodriguez, I., Perry, A. C., Studer, L. & Mombaerts, P. (2001). Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–3.
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–13.
Yanagimachi, R. (1998). Intracytoplasmic sperm injection experiments using the mouse as a model. Hum. Reprod. 13 (Suppl 1), 8798.

Keywords

Effect of volume of oocyte cytoplasm on embryo development after parthenogenetic activation, intracytoplasmic sperm injection, or somatic cell nuclear transfer

  • Wakayama Sayaka (a1), Kishigami Satoshi (a1), Nguyen Van Thuan (a1), Ohta Hiroshi (a1), Hikichi Takafusa (a1), Mizutani Eiji (a1), Bui Hong Thuy (a1), Miyake Masashi (a2) and Wakayama Teruhiko (a3) (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed