Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T11:32:07.248Z Has data issue: false hasContentIssue false

Effect of different types of sesquiterpene lactones on the maturation of Rhinella arenarum oocytes

Published online by Cambridge University Press:  13 February 2014

G. Sánchez-Toranzo*
Affiliation:
Departamento de Biología del Desarrollo, Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina.
J. Zapata-Martínez
Affiliation:
Departamento de Biología del Desarrollo, Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina.
C. Catalán
Affiliation:
Departamento de Biología del Desarrollo, Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina.
M.I. Bühler
Affiliation:
Departamento de Biología del Desarrollo, Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina.
*
All correspondence to: Graciela Sánchez-Toranzo. Departamento de Biología del Desarrollo, Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina. Fax: +54 381 4248025. e-mail: gsancheztoranzo@hotmail.com

Summary

The sesquiterpene lactones (STLs) are a large class of plant secondary metabolites that are generally found in the Asteraceae family and that have high diversity with respect to chemical structure as well as biological activity. STLs have been classified into different groups, such as guaianolides, germacranolides, and melampolides etc., based on their carboxylic skeleton. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under the stimulus of progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. The purpose of this work was to determine whether sesquiterpene lactones from the germacranolide and melampolide groups act as inhibitor agents on the meiosis of amphibian oocytes in vitro. Results for germacranolides indicated that the addition of deoxyelephantopins caused a high degree of inhibition and that minimolide showed a moderate inhibitory effect, whereas glaucolide A was inactive. Furthermore, the addition of melampolides (uvedalin, enhydrin, polymatin A and polymatin B) showed inhibitory effects. For enhydrin and uvedalin, inhibitory effects were observed at the higher concentrations assayed. The results of this study suggest that the inhibitory activity of the tested sesquiterpene lactones on the meiosis of Rhinella arenarum oocytes is not dependent on the group to which they belong, i.e. not on the carboxylic skeleton, but probably due to the arrangement and type of function groups present in the molecules. All assayed lactones in the germacranolide group showed low toxicity. In contrast, important differences in toxicity were observed for lactones from the melampolide group: enhydrin and uvedalin showed low toxicity, but polymatin A and B were highly toxic.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bach, S., Díaz, F.R., Bach, H. & Catalán, C. (2011). A facile and efficient four-step enantioselective synthesis of (+)-vernolepin from (+)-minimolide, the major germacranolide of Mikania minima . Nat. Prod. Commun. 6, 433–8.Google ScholarPubMed
Catalán, C., de Iglesias, D.I.A., Kavka, J., Sosa, V.E. & Herz, W. (1986). Sesquiterpene lactones and other constituents of Vernonia mollissima and Vernonia squamulosa . J. Nat. Prod. 49, 351–3.CrossRefGoogle Scholar
Cruzado, M., Castro, C., Fernández, D., Gómez, L, Roque, M., Giordano, O.E. & López, L.A. (2005). Dehydroleucodine inhibits vascular smooth muscle cell proliferation in G2 phase. Cell Mol. Biol. 51, 525–30.Google ScholarPubMed
Cuenca, M.R., Kokke, W.C.M.C. & Catalán, C. (1990). Dihydroxygermacranolides and other constituents from Mikania minima . J. Nat. Prod. 53, 686–91.CrossRefGoogle Scholar
de Pedro, A., Cuenca, M.R., Grau, A., Catalán, C., Gedris, T.E. & Herz, W. (2003). Melampolides from Smallanthus macroscyphus . Biochem. Syst. Ecol. 31, 1067–71.CrossRefGoogle Scholar
Dekel, N. (2005). Cellular biochemical and molecular mechanisms regulating oocytes maturation. Mol. Cell. Endocrinol. 29, 1925.CrossRefGoogle Scholar
Fortune, J.E., Concannon, P.W. & Hansel, W. (1975). Ovarian progesterone levels during in vitro oocyte maturation and ovulation in Xenopus laevis . Biol. Reprod. 13, 561–7.CrossRefGoogle ScholarPubMed
Ghantous, A., Gali-Muhtasib, H., Vuorela, H., Najat, A., Saliba, N.A. & Darwiche, N. (2010). What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today 15, 15–6.CrossRefGoogle ScholarPubMed
Giordano, O.S., Pestchanker, M.J., Guerreiro, E., Saad, J.R., Enriz, R.D., Rodriguez, A.M., Jauregui, E.A., Guzman, J., Maria, A.O. & Wendel, G.H. (1992). Structure–activity relationship in the gastric cytoprotective effect of several sesquiterpene lactones. J. Med. Chem. 35, 2452–8.CrossRefGoogle ScholarPubMed
Kupchan, S.M., Eakin, M.A. & Thomas, A.M. (1971). Tumor inhibitors. 69. Structure–cytotoxicity relationships among the sesquiterpene lactones. J. Med. Chem. 14, 1147–52.CrossRefGoogle ScholarPubMed
Lee, K.H., Huang, E.S., Piantadosi, C., Pagano, J.S. & Geissman, T.A. (1971). Cytotoxicity of sesquiterpene lactones. Cancer Res. 31, 1649–54.Google ScholarPubMed
Lee, K.H., Hall, I.H., Mar, E.C., Starnes, C.O., ElGebaly, S.A., Waddell, T.G., Hadgraft, R.I., Ruffner, C.G. & Weidner, I. (1977). Sesquiterpene antitumor agents: inhibitors of cellular metabolism. Science 196, 533–6.CrossRefGoogle ScholarPubMed
Lin, Y.P. & Schuetz, A.W. (1985). Spontaneous oocytes maturation in Rana pipiens: estrogen and follicle wall involvement. Gamete Res. 12, 1128.CrossRefGoogle Scholar
Lohka, M.J., Kyes, J.L. & Maller, J.L. (1987). Metaphase protein phosphorylation in Xenopus laevis eggs. Mol. Cell. Biol. 7, 760–8.Google ScholarPubMed
López, M.E., Giordano, O.S. & López, L.A. (2002). Sesquiterpene lactone dehydroleucodine selectively induces transient arrest in G2 in Allium cepa root meristematic cells. Protoplasma 219, 82–8.Google ScholarPubMed
Masui, Y. & Clarke, H.J. (1979). Oocyte maturation. Int. Rev. Citol. 57, 185282.CrossRefGoogle ScholarPubMed
Mercado, M.I., Coll Aráoz, M.V., Grau, A. & Catalán, C. (2010). New acyclic diterpenic acids from Yacon (Smallanthus sonchifolius) leaves. Nat. Prod. Commun. 5, 1721–6.Google ScholarPubMed
Penissi, A.B., Fogal, T.H., Guzmán, J.A. & Piezzi, R.S. (1998). Gastroduodenal mucosal protection induced by dehydroleucodine: mucus secretion and role of monoamines. Dig. Dis. Sci. 43, 791–8.CrossRefGoogle ScholarPubMed
Perdiguero, E. & Nebreda, A. (2004). Regulation of cdc25 activity during the meiotic G2/M transition. Cell Cycle 3, 733–7.CrossRefGoogle ScholarPubMed
Recio, M.C., Giner, R.M., Uriburu, L., Máñez, S., Cerdá, M., de la Fuente, J.R. & Ríosm, J.L. (2000). In vivo activity of pseudoguaianolide sesquiterpene lactones in acute and chronic inflammation. Life Sci. 66, 2509–18.CrossRefGoogle ScholarPubMed
Sánchez-Toranzo, G., Giordano, O., López, L. & Bühler, M.I. (2007). Effect of dehydroleucodine on meiosis reinitiation in Bufo arenarum denuded oocytes. Zygote 15, 183–7.CrossRefGoogle ScholarPubMed
Sánchez-Toranzo, G., López, L.A., Zapata-Martínez, J., Gramajo Bühler, M.C. & Bühler, M.I. (2009). Involvement of the dehydroleucodine α-methylene-γ-lactone function in GVBD inhibition in Bufo arenarum oocytes Zygote 18, 41–9.CrossRefGoogle ScholarPubMed
Schmidt, T.J. (2006). Structure–activity relationships of sesquiterpene lactones Stud. Nat. Prod. Chem. 33, 309–92.CrossRefGoogle Scholar
Schuetz, A.W. (1985). Local control mechanisms during oogenesis and folliculogenesis. In: Developmental Biology, vol. 1 (ed. Browder, L.W.), pp. 383. New York: Plenum Press.Google Scholar
Ybarra, M.I., Catalán, C., Guerreiro, E., Gutiérrez, A.B. & Herz, W. (1990). Deoxyelephantopin and 2-epideoxyelephantopin analogs from Gochnatia palosanto . Phytochemistry 29, 2020–4.CrossRefGoogle Scholar
Zelarayán, L.I., Oterino, J. & Bühler, M.I. (1995). Spontaneous maturation in Bufo arenarum oocytes: follicle wall involvement, respiratory activity, and seasonal influences. J. Exp. Zool. 272, 356–62.CrossRefGoogle ScholarPubMed
Zelarayán, L., Oterino, J. & Bühler, M.I. (1996). Spontaneous maturation in Bufo arenarum oocytes: participation of protein kinase C. Zygote 4, 257–62.CrossRefGoogle ScholarPubMed
Zhang, S., Won, Y.K., Ong, C.N., Shen, H.M. (2005). Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr. Med. Chem. Anticancer Agents 5, 239–49.CrossRefGoogle ScholarPubMed