Skip to main content Accessibility help

Early germinal vesicle breakdown is a predictor of high preimplantation developmental competent oocytes in mice

  • Shogo Higaki (a1), Masao Kishi (a2), Keisuke Koyama (a3), Masashi Nagano (a2), Seiji Katagiri (a2), Tatsuyuki Takada (a4) and Yoshiyuki Takahashi (a2)...


The preselection of highly developmentally competent oocytes for in vitro maturation (IVM) is crucial for improving assisted reproductive technology. Although several intrinsic markers of oocyte quality are known to be closely related to the onset of nuclear maturation (germinal vesicle break down, GVBD), a direct comparison between GVBD timing and oocyte quality has never been reported. In this study, we established a non-invasive oocyte evaluation method based on GVBD timing for preselecting more developmental competent oocytes in mice. Because the O2 concentration during IVM may affect the nuclear kinetics, all experiments were performed under two distinct O2 concentrations: 20% and 5% O2. First, we determined the time course of changes in nuclear maturation and preimplantation developmental competence of in vitro-matured oocytes to estimate GVBD timing in high developmental competent oocytes. Two-thirds of oocytes that underwent GVBD in early IVM seemed to mainly contribute to the blastocyst yield. To confirm this result, we compared the preimplantation developmental competence of the early and late GVBD oocytes. Cleavage and blastocyst formation rates of early GVBD oocytes (80.2% and 52.7% under 20% O2, respectively, and 67.6% and 47.3% under 5% O2, respectively) were almost double those of late GVBD oocytes (44.8% and 26.0% under 20% O2, respectively, and 40.4% and 17.9% under 5% O2, respectively). With no observable alterations by checking the timing of GVBD in preimplantation developmental competence, oocyte evaluation based on GVBD timing can be used as an efficient and non-invasive preselection method for high developmental competent oocytes.


Corresponding author

All correspondence to: Shogo Higaki. Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga 525 8577, Japan. Tel: +81 77 561 2266. E-mail:


Hide All
Adam, A.A.G., Takahashi, Y., Katagiri, S. & Nagano, M. (2004). Effects of oxygen tension in the gas atmosphere during in vitro maturation, in vitro fertilization and in vitro culture on the efficiency of in vitro production of mouse embryos. Jpn. J. Vet. Res. 52, 7784.
Banwell, K.M. & Thompson, J.G. (2008). In vitro maturation of mammalian oocytes: outcomes and consequences. Semin. Reprod. Med. 26, 162–74.
Banwell, K., Lane, M., Russell, D., Kind, K. & Thompson, J. (2007). Oxygen concentration during mouse oocyte in vitro maturation affects embryo and fetal development. Hum. Reprod. 22, 2768–75.
Bedford, J. (1971). Techniques and criteria used in the study of fertilization. In Daniel, J.C. (ed.). Methods in Mammalian Embryology, London: W.H. Freeman. pp. 3763.
Bukowska, D., Kempisty, B., Piotrowska, H., Walczak, R., Sniadek, P., Dziuban, J., Brussow, K., Jaskowski, J. & Nowicki, M. (2012). The invasive and new non-invasive methods of mammalian oocyte and embryo quality assessment: a review. Vet. Med. 57, 169–76.
Catalá, M.G., Izquierdo, D., Uzbekova, S., Morató, R., Roura, M., Romaguera, R., Papillier, P. & Paramio, M.T. (2011). Brilliant cresyl blue stain selects largest oocytes with highest, mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep. Reproduction 142, 517–27.
Chesnel, F. & Eppig, J.J. (1995). Synthesis and accumulation of p34cdc2 and cyclin B in mouse oocytes during acquisition of competence to resume meiosis. Mol. Reprod. Dev. 40, 503–8.
Christmann, L., Jung, T. & Moor, R.M. (1994). MPF components and meiotic competence in growing pig oocytes. Mol. Reprod. Dev. 38, 8590.
Dominko, T. & First, N.L. (1997). Timing of meiotic progression in bovine oocytes and its effect on early embryo development. Mol. Reprod. Dev. 47, 456–67.
Donahue, R.P. (1968). Maturation of the mouse oocyte in. vitro. I. Sequence and timing of nuclear progression. J. Exp. Zool. 169, 237–49.
Eppig, J.J. & Wigglesworth, K. (1995). Factors affecting the developmental competence of mouse oocytes grown in vitro: oxygen concentration. Mol. Reprod. Dev. 42, 447–56.
Erbach, G.T., Lawitts, J.A., Papaioannou, V.E. & Biggers, J.D. (1994). Differential growth of the mouse preimplantation embryo in chemically defined media. Biol. Reprod. 50, 1027–33.
Fair, T. (2009). Mammalian oocyte development: checkpoints for competence. Reprod. Fertil. Dev. 22, 1320.
Hashimoto, S., Minami, N., Takakura, R., Yamada, M., Imai, H. & Kashima, N. (2000). Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus–oocyte complexes. Mol. Reprod. Dev. 57, 353–60.
Kubiak, J.Z., Ciemerych, M.A., Hupalowska, A., Sikora-Polaczek, M. & Polanski, Z. (2008). On the transition from the meiotic to mitotic cell cycle during early mouse development. Int. J. Dev. Biol. 52, 201.
LaRosa, C. & Downs, S.M. (2006). Stress stimulates AMP-activated protein kinase and meiotic resumption in mouse oocytes. Biol. Reprod. 74, 585–92.
Ledda, S., Bogliolo, L., Leoni, G. & Naitana, S. (2001). Cell coupling and maturation-promoting factor activity in in vitro-matured prepubertal and adult sheep oocytes. Biol. Reprod. 65, 247–52.
Liu, X.Y., Mal, S.F., Miao, D.Q., Liu, D.J., Bao, S. & Tan, J.H. (2005). Cortical granules behave differently in mouse oocytes matured under different conditions. Hum. Reprod. 20, 3402–13.
Messinger, S.M. & Albertini, D.F. (1991). Centrosome and microtubule dynamics during meiotic progression in the mouse oocyte. J. Cell. Sci. 100, 289–98.
Mingoti, G.Z, Castro, V.S.D.C., Méo, S.C., Barretto, L.S.S. & Garcia, J.M. (2011). The effects of macromolecular and serum supplements and oxygen tension during bovine in vitro procedures on kinetics of oocyte maturation and embryo development. In Vitro Cell. Dev. Biol-Anim. 47, 361–7.
Murray, A.W. & Kirschner, M.W. (1989). Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–80.
Naito, K., Daen, F.P. & Toyoda, Y. (1992). Comparison of histone H1 kinase activity during meiotic maturation between two types of porcine oocytes matured in different media in vitro . Biol. Reprod. 47, 43–7.
Otoi, T., Yamamoto, K., Koyama, N., Tachikawa, S. & Suzuki, T. (1997). Bovine oocyte diameter in relation to developmental competence. Theriogenology 48, 769–74.
Preis, K.A., Seidel, G.E. & Gardner, D.K. (2007). Reduced oxygen concentration improves the developmental competence of mouse oocytes following in. vitro maturation. Mol. Reprod. Dev. 74, 893903.
Sirard, M.A., Richard, F., Blondin, P. & Robert, C. (2006). Contribution of the oocyte to embryo quality. Theriogenology 65, 126–36.
Son, W.Y., Lee, S.Y. & Lim, J.H. (2005). Fertilization, cleavage and blastocyst development according to the maturation timing of oocytes in. vitro maturation cycles. Hum. Reprod. 20, 3204–7.
Takahashi, Y. & First, N. (1992). In. vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 37, 963–78.
Toyoda, Y. (1971). Studies on fertilization of mouse eggs in vitro. I. In vitro fertilization of eggs by fresh epididymal sperm. Jpn J. Anim. Reprod. 16, 147–51.
Wang, Q. & Sun, Q.Y. (2006). Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reprod. Fertil. Dev. 19, 112.
Wu, Y.G., Liu, Y., Zhou, P., Lan, G.C., Han, D., Miao, D.Q. & Tamm, J.H. (2007). Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model. Cell. Res. 17, 722–31.
Zeilmaker, G., Hulsmann, W., Wensinck, F. & Verhamme, C. (1972). Oxygen-triggered mouse oocyte maturation in vitro and lactate utilization by mouse oocytes and zygotes. J. Reprod. Fertil. 29, 151–2.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed