Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T16:07:37.042Z Has data issue: false hasContentIssue false

Early development of Betta splendens under stereomicroscopy and scanning electron microscopy

Published online by Cambridge University Press:  11 November 2013

Fernanda Nogueira Valentin
Affiliation:
Centro de Aquicultura da Universidade Estadual Paulista (CAUNESP), Jaboticabal, São Paulo, Brazil.
Nivaldo Ferreira do Nascimento
Affiliation:
Centro de Aquicultura da Universidade Estadual Paulista (CAUNESP), Jaboticabal, São Paulo, Brazil.
Regiane Cristina da Silva
Affiliation:
Centro de Aquicultura da Universidade Estadual Paulista (CAUNESP), Jaboticabal, São Paulo, Brazil.
João Batista Kochenborger Fernandes
Affiliation:
Centro de Aquicultura da Universidade Estadual Paulista (CAUNESP), Jaboticabal, São Paulo, Brazil.
Laura Satiko Okada Nakaghi*
Affiliation:
Laboratório de Histologia e Embriologia, Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, ZIP code-14884–900, Jaboticabal–São Paulo, Brazil
*
All correspondence to: Laura S.O. Nakaghi. 2Laboratório de Histologia e Embriologia, Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, ZIP code-14884–900, Jaboticabal–São Paulo, Brazil. Tel:/Fax: +55 16 3209 2654 (ext. 232). e-mail: laurankg@fcav.unesp.br

Summary

Betta splendens is a very important ornamental species. The current paper describes the embryonic and larval development of B. splendens under stereomicroscopy and scanning electron microscopy. Eggs and larvae from natural spawning were collected at different developmental stages at previously established intervals and analysed. The eggs of B. splendens are yellowish, clear, spherical, demersal, translucent and telolecithal with a large amount of yolk. Between 0–2 h post-initial collection (hpIC), the eggs were at the egg cell, first cleavage and morula stages. The blastula stage was identified at 2–3 hpIC and the early gastrula phase was observed at 3–4 hpIC with 20% epiboly, which was finalized after 13–18 hpIC. When the pre-larvae were ready to hatch, the appearance of somites and the free tail were observed, at 23–25 hpIC. At 29 hpIC, the majority of larvae had already hatched at an average temperature of 28.4 ± 0.2°C. The newly hatched larvae measured 2.47 ± 0.044 mm total length. The mouth opened at 23 h post-hatching (hPH) and the yolk sac was totally absorbed at 73 hPH. After 156 hPH, the heart was pumping blood throughout the entire larval body. The caudal fin, operculum and eyes were well developed at 264 hPH. When metamorphosis was complete at 768 hPH, the larvae became juveniles. The current study presents the first results about early development of B. splendens and provides relevant information for its reproduction, rearing and biology.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberto Weber, A., Sato, Y., Enemir Santos, J., Rizzo, E. & Bazzoli, N. (2012). Eggs ultrastructure and early development of Franciscodoras marmoratus (Pisces: Doradidae). Anat. Histol. Embryol. 41, 177–83.Google Scholar
Anjos, H.D.B. & Anjos, C.R. (2006). Biologia reprodutiva e desenvolvimento embrionário e larval do cardinal tetra, Paracheirodon axelrodi, Schultz, 1956 (Characiformes: Characidae), em laboratório. Bol. Inst. Pesca. 32, 151–66.Google Scholar
Araújo-Lima, C.A.R.M. & Bittencourt, M.M. (2001). A reprodução e o início da vida de Hoplias malabaricus (Erythrinidae; Characiformes) na Amazônia Central. Acta Amaz. 31, 693–7.Google Scholar
Bejarano-Escobar, R., Blasco, M., Degrip, W.J., Oyola-Velasco, J.A., Martín-Partido, G. & Francisco-Morcillo, J. (2010). Eye development and retinal differentiation in an altricial fish species, the senegalese sole (Solea senegalensis, Kaup 1858). J. Exp. Zool. Part B: Dev. Evol. 314, 580605.Google Scholar
Bilotta, J. & Saszik, S. (2001). The zebrafish as a model visual system. Int. J. Dev. Neuroscience 19, 621–9.Google Scholar
Borges, R.A., Faria, C.B.M., Gil, F., Goncalves, E.J. & Almada, V.C. (2003). Embryonic and larval development of Gobius paganellus (Pisces: Gobiidae). J. Mar. Biol. Assoc. UK. 83, 1151–6.Google Scholar
Brooks, S., Tyler, C.R. & Sumpter, J.P. (1997). Egg quality in fish: what makes a good egg? Rev. Fish Biol. Fisher. 7, 387416.Google Scholar
Celik, I., Celik, P., Cirik, S., Gurkan, M. & Hayretdag, S. (2012). Embryonic and larval development of black skirt tetra (Gymnocorymbus ternetzi, Boulenger, 1895) under laboratory conditions. Aquac. Res. 43, 1260–75.Google Scholar
Coleman, R.M. & Galvani, A.P. (1998). Egg size determines offspring size in neotropical cichlid fishes (Teleostei : Cichlidae). Copeia 1998, 209–13.Google Scholar
da Rocha Perini, V., Sato, Y., Rizzo, E. & Bazzoli, N. (2010). Biology of eggs, embryos and larvae of Rhinelepis aspera (Spix & Agassiz, 1829) (Pisces: Siluriformes). Zygote 18, 159–71.Google Scholar
Damazio, A. (1992). Criando o Betta. Rio de Janeiro, Brazil: Inter-Revistas.Google Scholar
Faria, P.M.C., Crepaldi, D.V., Teixeira, E.A., Ribeiro, L.P., Souza, A.B., Carvalho, D.C., Melo, D.C. & Saliba, E.O.S. (2006). Criação, manejo e reprodução do peixe Betta splendens (Regan 1910). Rev. Bras. Reprod. Anim. 30, 134–49.Google Scholar
Faustino, F., Nakaghi, L.S.O., Marques, C., Ganeco, L.N. & Makino, L.C. (2010a). Structural and ultrastructural characterization of the embryonic development of Pseudoplatystoma spp. hybrids. Int. J. Dev. Biol. 54, 723–30.Google Scholar
Faustino, F., Nakaghi, L.S.O. & Neumann, E. (2010b). Brycon gouldingi (Teleostei, Characidae): aspects of the embryonic development in a new fish species with aquaculture potential. Zygote 19, 351–63.Google Scholar
Gilbert, S.F. (2003). Biologia do Desenvolvimento. Ribeirão Preto, São Paulo, Brazil: FUNPEC.Google Scholar
Godinho, H.P. & Godinho, A.L. (2003). Águas, Peixes e Pescadores do São Francisco das Minas Gerais. Belo Horizonte, Brazil: Puc Minas.Google Scholar
Godinho, A.L., Lamas, I.R. & Godinho, H.P. (2010). Reproductive ecology of Brazilian freshwater fishes. Environ. Biol. Fish. 87, 143–62.CrossRefGoogle Scholar
Kang, C.-K. & Lee, T.-H. (2010). The pharyngeal organ in the buccal cavity of the male Siamese fighting fish, Betta splendens, supplies mucus for building bubble nests. Zool. Sci. 27, 861–6.Google Scholar
Kendall, A.W., Ahlstrom, E.H. & Moser, H.G. (1984). Early life history stages of fishes and their characters. In Ontogeny and Systematics of Fishes (eds. Moser, H.G., Richards, W.J., Cohen, D.M., Fahay, M.P., Kendall, A.W. & Richardson, S.L.) pp. 1122. Lawrence, KS, USA: American Society of Ichthyologists and Herpetologists.Google Scholar
Kolm, N. & Ahnesjo, I. (2005). Do egg size and parental care coevolve in fishes? J. Fish Biol. 66, 1499–515.Google Scholar
Kunz, Y.W. (2004). Developmental Biology of Teleost Fishes. Dordrecht, The Netherlands: Springer.Google Scholar
Leme dos Santos, H.S. & Azoubel, R. (1996). Embriologia Comparada. Jaboticabal, São Paulo, Brazil: FUNEP.Google Scholar
Maciel, C.M.R.R., Lanna, E.A.T., Junior, A.M., Donzele, J.L., Neves, C.A. & Menin, E. (2010). Morphological and behavioral development of the piracanjuba larvae. Rev. Bras. Zootecn. 39, 961–70.CrossRefGoogle Scholar
Marques, C., Okada Nakaghi, L.S., Faustino, F., Ganeco, L.N. & Senhorini, J.A. (2008). Observation of the embryonic development in Pseudoplatystoma coruscans (Siluriformes: Pimelodidae) under light and scanning electron microscopy. Zygote 16, 333–42.Google Scholar
Martell, D.J., Kieffer, J.D. & Trippel, E.A. (2005). Effects of temperature during early life history on embryonic and larval development and growth in haddock. J. Fish Biol. 66, 1558–75.Google Scholar
Matkovic, M.V., Cussac, V.E., Cukier, M., Guerrero, G.A. & Maggese, M.C. (1985). Desarrollo embrionário de Rhamdia sapo (Valencieness, 1840) Eigenmann y Eigenmann, 1888 (Pisces, Pimelodidae). I. Segmentación, morfogénesis y organogenesis temprana. Rev. Bras. Biol. 45, 3950.Google Scholar
Meijide, F.J. & Guerrero, G.A. (2000). Embryonic and larval development of a substrate- brooding cichlid Cichlasoma dimerus (Heckel, 1840) under laboratory conditions. J. Zool. 252, 481–93.Google Scholar
Monvises, A., Nuangsaeng, B., Sriwattanarothai, N. & Panijpan, B. (2009). The Siamese fighting fish: Well-known generally but little-known scientifically. Science Asia 35, 816.Google Scholar
Morrison, C.M., Miyake, T. & Wright, J.R. (2001). Histological study of the development of the embryo and early larva of Oreochromis niloticus (Pisces: Cichlidae). J. Morphol. 247, 172–95.Google Scholar
Nakatani, K., Agostinho, A.A., Baumgartner, G., Bialetzki, A., Sanches, P.V. & Cavicchioli, M. (2001). Ovos e Larvas de Peixes de Água Doce: Desenvolvimento e Manual de Identificação. Maringá, Brazil: EDUEM/Nupélia.Google Scholar
Ninhaus-Silveira, A., Foresti, F. & de Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiformes; Prochilodontidae). Zygote 14, 217–29.CrossRefGoogle ScholarPubMed
Osse, J.W.M. (1989). Form changes in fish larvae in relation to changing demands of function. Neth. J. Zool. 40, 362–85.Google Scholar
Paes, M.C.F., Makino, L.C., Vasquez, L.A., Fernandez Kochenborger, J.B. & Nakaghi, L.S.O. (2011). Early development of Astronotus ocellatus under stereomicroscopy and scanning electron microscopy. Zygote 20, 269–76.Google Scholar
Rizzo, E., Sato, Y., Barreto, B.P. & Godinho, H.P. (2002). Adhesiveness and surface patterns of eggs in neotropical freshwater teleosts. J. Fish Biol. 61, 615–32.Google Scholar
Solnica-Krezel, L. (2005). Conserved patterns of cell movements during vertebrate gastrulation. Curr. Biol. 15, R21328.Google Scholar
Takeuchi, M., Okabe, M. & Aizawa, S. (2008). The genus Polypterus (Bichir); a fish group diverged at the stem of ray-finned fishes (Actinopterygii). In Emerging Model Organisms (eds. Gann, A. & Crotty, D.) pp. 447–67. New York: Cold Spring Harbor.Google Scholar
Watson, C.A. & Chapman, F.A. (2002). Artificial Incubation of Fish Eggs. Fact Sheet FA-32, Institute of Food and Agricultural Science, University of Florida Extension. Available at http://edistt.ifas.ufl.edu/fa051 (accessed 9 December 2012).Google Scholar
Wolpert, L., Beddington, R., Brockes, J., Jessell, T., Lawrence, P. & Meyerowitz, E. (2000). Princípios de Biologia do Desenvolvimento. Porto Alegre: Artmed.Google Scholar
Yúfera, M. & Darias, M.J. (2007). The onset of exogenous feeding in marine fish larvae. Aquaculture 268, 5363.Google Scholar