Skip to main content Accessibility help
×
Home

Differential accumulation of mRNA and interspersed RNA during Xenopus oogenesis and embrypgenesis

  • Chengyu Liu (a1) and L. Dennis Smith (a1)

Summary

Xenopus ooctye cytoplasmic poly(A)+ RNA has been shown to include two major complex classes: mRNA and interspersed RNA. the former is defined by its translatalility, the latter consists of non–translatable repeat–containing transcripts with unknown functions. In this study we compared the accumulation patterns of total mRNA and a subfamily of interspersed RNA, the XR family (McGrew&Richter, 1989, Dev. Biot. 134, 267–70)

Copyright

Corresponding author

Dr Chengyu Liu, Roche Institue of molecular Biology, 340 Kingsland street, Nutley, NJ 07110, USA. Telephone: (201)-235-4574. (201)-235-2839.

References

Hide All
Andéol, Y., Gusse, M. & Méchali, M.. (1990). Characterization and expression of a Xeno pus ras during oogenesis and development. Dev. Biol. 139, 2434.
Anderson, D.M., Richter, J.D., Chamberlin, M.E., Price, D.H., Britten, R.J., Smith, L.D. & Davidson, E.H.. (1982). Sequence organization of poly(A) RNA synthesized and accumulated in lampbrush chromosome stage Xeno pus laevis. J. Mol. Biol. 155, 281309.
Bagni, C., Mariottini, P., Annesi, F. & Amaldi, F.. (1990). Structure of Xeno pus laevis ribosomal protein 132 and its expression during development. Nucleic Acids Res. 18, 442–36.
Baum, E.Z. & Wormington, W.J.. (1985). Coordinate expression of protein genes during Xenopus development. Dev Biol. 111, 488–98.
Cabada, M.O., Darnbrough, C., Ford, P.J. & Turner, P.C.. (1977). Differential accumulation of two size classes of poly(A) associated with messenger RNA during oogenesis in Xenopus laevis. Dev. Biol. 57, 427–39.
Caizone, F.J., Angerer, R.C. & Gorovsky, M.A.. (1982). Regulation of protein synthesis in Tetrahyma: isolation and characterization of polysomes by gel filtration and precipitation at pH 5.3. Nucleic Acids Res. 10, 2145–61.
Calzone, F.J., Jacobs, H.T., Flytzanis, C.N., Posakony, J.W. & Davidson, E.H.. (1985). Interspersed maternal RNA of sea urchin and amphibian eggs. In Biology of Fertilization: The Fertilization Response of the Eggs, ed. Mertz, CB & Monroy, A, 3, 347–66. Orlando, Florida: Academic Press.
Caizone, F.J., Lee, J.J., Le, N., Britten, R.J. & Davidson, E.H.. (1988). A long, nontranslatable poly(A) RNA stored in the egg of the sea urchin Strongylocentrotus purpuratus. Genes Dev. 2, 305–18.
Costantini, F.D., Britten, R.J. & Davidson, E.H.. (1980). Message sequences and short repetitive sequences are interspersed in sea urchin egg poly(A) + RNAs. Nature 287, 111–17.
Dale, L., Matthews, C., Tabe, L.. & Colman, A.. (1989). Developmental expression of the protein product of Vgl, a localized maternal mRNA in the frog Xeno pus laevis. EMBO J. 8, 1057–65.
Darnbrough, C.H. & Ford, P.J.. (1979). Turnover and processing of poly(A) in full-grown oocytes and during progesterone-induced oocyte maturation in Xeno pus laevis. Dev. Biol. 71, 323–40.
Davidson, E.H.. (1986). Gene Activity in Early Development, 3rd edn. Orlando, Florida: Academic Press.
Deschamps, S., Viel, A., Garrigos, M., Denis, H. & Maire, M.. (1992). mRNP4, a major mRNA-binding protein from Xenopus oocytes is identical to transcription factor FRG Y2. J. Biol. Chem. 267, 13799–802.
Dolecki, G.J. & Smith, L.D. (1979). Poly(A)+ RNA metabolism during oogenesis in Xenopus laevis. Dev. Biot. 69, 217–36.
Dumont, J.N.. (1972). Oogenesis in Xeno pus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. I. Morphol. 136, 153–80.
Ford, P.J., Mathieson, T. & Rosbash, M.. (1977). Very long–lived messenger RNA in ovaries of Xeno pus taevis. Dev. Biol. 57, 417–26.
Fox, C.A. & Wickens, M.. (1990). Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3' UTR of certain maternal mRNAs. Genes Dev. 4, 2287–98.
Fox, C.A., Sheets, M.D. & Wickens, M.P.. (1989). Poly(A) addition during maturation of frog oocytes distinct nuclear and cytoplasmic activities and regulation by the sequence. UA. Genes Dev. 3, 2151–62.
Fox, C.A., Sheets, M.D., Wahle, E. & Wickens, M.. (1992). Polyadenylation of maternal mRNA during oocyte maturation: poly(A) addition in vitro requires a regulated RNA binding activity and a poly(A) polymerase. EMBO. 11, 5021–32.
Golden, L., Schafer, U. & Rosbash, M.. (1980). Accumulation of individual pA + RNAs during oogenesis of Xeno pus laevis. Cell 22 835–44.
Hyman, L.E. & Wormington, M.W.. (1988). Translational inactivation of ribosomal protein mRNA during Xenopus oocyte maturation, Genes Dev. 2, 598605.
Ibanez, C.F., Hallbook, F. & Persson, H.. (1992). Expression of neurotrophin–4 mRNA during oogenesis in Xenopus laevis. Int J Dev Biol. 36, 239–45.
Jackson, R.J.. (1993). Cytoplasmic regulation of mRNA function: the importance of the 3 untranslated region. Cell 74, 914.
Liu, C.. (1992). Accumulation, polyadenylation, storage, and the possible function of interspersed RNA during Xenopus oogenesis and embryogenesis. PhD thesis, University of Califonia Irvine.
Liu, C. & Smith, L.D.. (1994). Evidence that XR family interspersed RNA may regulate translation in Xenopus oocytes. Mol. Reprod. Dev. In press.
McGrew, L.L. & Richter, J.D.. (1989). Xenopus oocyte poly(A) RNAs that hybridize to a cloned interspersed repeat sequence are not translatable. Dev. Biol. 134, 267–70.
McGrew, L.L. & Richter, J.D.. (1990). Translational control by cytoplasmic polyadenylation during xenopus oocyete matution: characterizatiopn of cis and trans elenents and regulation by cyclin/Mpf. EMBO J. 9, 3743–51.
McGrew, L.L., Dworkin–Rastl, E., Dworkin, M.B. & Richter, J.D.. (1989). Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 3,803–15.
Melton, D.A.. (1987). Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328, 80–2.
Miller, T.J., Stephens, D.L. & Mertz, J.E. (1982). Kinetics of accumulation and processing of simian virus 40 rna in Xenopus laeivs oocytes injected with simian virus 40 Dna. Mol Cell Biol 2 1581–94.
MInshull, J., Blow, J.J. & Hunt, T.. (1989). Translation of cycilin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56, 947–56.
Murray, M.T., Schiller, D.L.. & Franke, W.W.. (1992). Sequence analysis of cytoplasmic mRNA-binding proteins of Xenopus oocytes identifies a family of RNA-binding proteins. Proc. Natl. Acad. Sci. USA 89, 1115.
Newport, J. & Kirschner, M.. (1982a). A major developmental transition in early Xeno pus embryos. I. Characterization and timing of cellular changes at midblastula stage. Cell 30, 675–86.
Newport, J. & Kirschner, M.. (1982b). A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell 30, 687–96.
Nieuwkoop, P.D. & Faber, J.. (1967). Normal Table of Xenopus laevis (Daudin). Amsterdam: North-Holland.
Paris, J. & Richter, J.D.. (1990). Maturation–specific polyadenylation and translation control: diversity of cytoplamic polyadenylation elements, influence of poly(A) tail size and formation of ftable polyadenylation complexes. Mol. Cell Biol. 10, 5634–45.
Paris, J., Swenson, K., PiwnicaWorms, H. & Richter, J.D.. (1991). Maturation-specific polyadenylation: in vitro activation by p34C2 and phosphorylation of a 58-kD CPE-binding protein. Genes Dev. 5, 1697–708.
Pierandrei–Amaldi, P., Campioni, N., Beccari, E., Bozzoni, I. & Amaldi, F.. (1982). Expression of ribosomal–protein genes in Xenopus laevis development. Cell 30, 163–71.
Richter, J.D., Anderson, D.M., Davidson, E.H. & Smith, L.D.. (1984). Interspersed poly(A) RNAs of amphibian oocytes are not translatable, at. J. Mol. Biol. 173, 227–41.
Rosbash, M. & Ford, P.J. (1974). Polyadenylic acid-containing RNA in Xenopus laevis oocytes. I. Mol. Biol. 85, 87101.
Sagata, N., Shiokawa, K. & Yamana, K.. (1980). A study of the steady–state population of poly(A) RNA during early development of Xenopus laevis. Dev. Biol. 77, 431–48.
Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J. & VandeWoude, G.F.. (1988). Function of c-mos protooncogene product in meiotic maturation in Xenopus oocytes. Nature 335, 519–25.
Sambrook, J., Fritsch, E.F. & Maniatis, T.. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
Simon, R. & Richter, J.D.. (1992). Translational control by poly(A) elongation during Xenopus development: differential repression and enhancement by a novel cytoplasmic polyadenylation element. Genes Dev. 6, 2580–91.
Smith, L.D.. (1992). Translational regulation of maternal messenger RNA. In Advances in Development Biochemistry, ed. Wasserman, PM, 1, 136–67. Greenwich, Connecticut: JAI Press.
Tafuri, R. & Wolffe, A.P.. (1993). Dual roles for transcription and translation factors in the RNA storage particles of Xeno pus oocytes. Trends Cell Biol. 3, 94–8.
Tannahill, D. & Melton, D.A.. (1989). Localized synthesis of the Vgl protein during early Xenopus development. Development 106, 775–85.
Taylor, M.A. & Smith, L.D.. (1985). Quantitative changes in protein synthesis during oogenesis in Xeno pus laevis. Dev. Biol. 110, 230–7.
Varnum, S.M. & Wormington, W.M.. (1990). Deadenylation of mRNAs during Xenopus oocyte maturation does not require specific cis–sequences: a default mechanism for translational control. Genes Dev. 4, 2278–86.
Wallace, R.A., Jared, D.W., Dumont, J.N. & Sega, M.W.. (1973). Protein incorporation by isolated amphibian oocytes. III. Optimum incubation conditions. I. Exp. Zool. 184, 321–34.
Wickens, M.. (1992). Forward, backward, how much, when: mechanisms of poly(A) addition and removal and their role in early development. Semin. Dev. Biol. 3, 399412.
Wickens, M.P.. & Gurdon, J.B. (1983). Post-transcriptional processing of simian virus 40 late transcripts in injected frog oocytes. I. Mol. Biol. 163, 126.
Yisraeli, J.K., Sokol, S. & Melton, D.A.. (1990). A two-step model for the locelization of maternal mrna in Xenopus oocytes: invoolvement of microtubes and microfilamrnts in the translocation and anchoring of Vg1 mRna. Development 108, 289–98.

Keywords

Differential accumulation of mRNA and interspersed RNA during Xenopus oogenesis and embrypgenesis

  • Chengyu Liu (a1) and L. Dennis Smith (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed