Skip to main content Accessibility help
×
Home

Development of interspecies cloned embryos reconstructed with rabbit (Oryctolagus cuniculus) oocytes and cynomolgus monkey (Macaca fascicularis) fibroblast cell nuclei

  • Takayuki Yamochi (a1), Yuta Kida (a1), Noriyoshi Oh (a1), Sei Ohta (a2), Tomoko Amano (a1), Masayuki Anzai (a3), Hiromi Kato (a3), Satoshi Kishigami (a1), Tasuku Mitani (a3), Kazuya Matsumoto (a1) (a3), Kazuhiro Saeki (a1) (a3), Makoto Takenoshita (a2), Akira Iritani (a1) and Yoshihiko Hosoi (a4) (a1) (a3)...

Summary

Interspecies somatic cell nuclear transfer (ISCNT) has been proposed as a technique to produce cloned offspring of endangered species as well as to investigate nucleus–cytoplasm interactions in mammalian embryo. However, it is still not known which embryo culture medium is optimal for ISCNT embryos for the nuclear donor or the oocyte recipient. We assessed the effects of the culture medium on the developmental competence of the ISCNT embryos by introducing cynomolgus monkey (Macaca fascicularis) fibroblast nuclei into enucleated rabbit (Oryctolagus cuniculus) oocytes (monkey–rabbit embryo). The monkey–rabbit ISCNT embryos that were cultured in mCMRL-1066 developed to the blastocyst stage, although all monkey–rabbit ISCNT embryos cultured in M199 were arrested by the 4-cell stage. When monkey–rabbit ISCNT and rabbit–rabbit somatic cell nuclear transfer (SCNT) embryos were cultured in mCMRL-1066, the blastocyst cell numbers of the monkey–rabbit ISCNT embryos corresponded to the cell numbers of the control rabbit–rabbit SCNT embryos, which were produced from a rabbit fibroblast nucleus and an enucleated rabbit oocyte. In addition, the presence of mitochondria, which were introduced with monkey fibroblasts into rabbit recipient cytoplasm, was confirmed up to the blastocyst stage by polymerase chain reaction (PCR). This study demonstrated that: (1) rabbit oocytes can reprogramme cynomolgus monkey somatic cell nuclei, and support preimplantation development; (2) monkey–rabbit ISCNT embryos developed well in monkey culture medium at early embryonic developmental stages; (3) the cell number of monkey–rabbit ISCNT embryos is similar to that of rabbit–rabbit SCNT embryos; and (4) the mitochondrial fate of monkey–rabbit ISCNT embryos is heteroplasmic from the time just after injection to the blastocyst stage that has roots in both rabbit oocytes and monkey fibroblasts.

Copyright

Corresponding author

All correspondence to: Y. Hosoi. Department of Genetic Development, Kinki University, Wakayama 649-6493, Japan. Tel: +81 736 77 3888. Fax: +81 736 77 4754. e-mail: Hosoi@waka.kindai.ac.jp

References

Hide All
Baguisi, A., Behboodi, E., Melican, D.T., Pollock, J.S., Destrempes, M.M., Cammuso, C., Williams, J.L., Nims, S.D., Porter, C.A., Midura, P., Palacios, M.J. & Ayres, SL. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–61.
Chen, D.Y., Wen, D.C., Zhang, Y.P., Sun, Q.Y., Han, Z.M., Liu, Z.H., Shi, P., Li, J.S., Xiangyu, J.G., Lian, L., Kou, Z.H., Wu, Y.Q., Chen, Y.C., Wang, P.Y. & Zhang, H.M. (2002). Interspecies implantation and mitochondria fate of panda–rabbit cloned embryos. Biol. Reprod. 67, 637–42.
Chesné, P., Adenot, P.G., Viglietta, C., Baratte, M., Boulanger, L. & Renard, J.P. (2002). Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 20, 366–9.
Dominko, T., Mitalipova, M., Haley, B., Beyhan, Z., Memili, E., McKusick, B. & First, N.L. (1999). Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biol. Reprod. 60, 1496–502.
Evans, M.J., Gurer, C., Loike, J.D., Wilmut, I., Schnieke, A.E. & Schon, E.A. (1999). Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat. Genet. 23, 90–3.
Folch, J., Cocero, M.J., Chesné, P., Alabart, J.L., Domínguez, V., Cognié, Y., Roche, A., Fernández-Árias, A., Martí, J.I., Sánchez, P., Echegoyen, E., Beckers, J.F., Bonastre, A.S. & Vignon, X. (2009). First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology 71, 1026–34.
Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R. & Lazzari, G. (2003). A cloned horse born to its dam twin. Nature 424–35.
Gómez, M.C., Pope, C.E., Giraldo, A., Lyons, L.A., Harris, R.F., King, A.L., Cole, A., Robert, A., Godke, R.A. & Dresser, B.L. (2004). Birth of African wildcat cloned kittens born from domestic cats. Cloning Stem Cells 6, 247–58.
Gómez, M.C., Pope, C.E., Kutner, R.H., Ricks, D.M., Lyons, L.A., Ruhe, M., Dumas, C., Lyons, J., López, M., Dresser, B.L. & Reiser, J. (2008). Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning Stem Cells 10, 469–83.
Gómez, M.C., Pope, C.E., Ricks, D.M., Lyons, J., Dumas, C. & Dresser, B.L. (2009). Cloning endangered felids using heterospecific donor oocytes and interspecies embryo transfer. Reprod. Fertil. Dev. 21, 7682.
Hua, S., Zhang, Y., Song, K., Song, J., Zhang, Z., Zhang, L., Zhang, C., Cao, J. & Ma, L. (2008) Development of bovine–ovine interspecies cloned embryos and mitochondria segregation in blastomeres during preimplantation. Anim. Reprod. Sci. 105, 245–57.
Iwata, H., Akamatsu, S., Minami, N. & Yamada, M. (1998). Effects of antioxidants on the development of bovine IVM/IVF embryos in various concentrations of glucose. Theriogenology 50, 365–75.
Jiang, M.X., Yang, C.X., Zhang, L.S., Zheng, Y.L., Liu, S.Z., Sun, Q.Y. & Chen, D.Y. (2004). The effects of chemical enucleation combined with whole cell intracytoplasmic injection on panda–rabbit interspecies nuclear transfer. Zygote 12, 315–20.
Jiang, Y., Chen, T., Nan, C.L., Ouyang, Y.C., Sun, Q.Y. & Chen, D.Y. (2005) In vitro culture and mtDNA fate of ibex–rabbit nuclear transfer embryos. Zygote 13, 233–40.
Kato, Y., Tani, T., Sotomaru, Y., Kurokawa, K., Kato, J., Doguchi, H., Yasue, H. & Tsunoda, Y. (1998). Eight calves cloned from somatic cells of single adult. Science 282, 2095–8.
Kim, M.K., Jang, G., Oh, H.J., Yuda, F., Kim, H.J., Hwang, W.S., Hossein, M.S., Kim, J.J., Shin, N.S., Kang, S.K. & Lee, B.C. (2007). Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 9, 130137.
Lanza, R.P., Cibelli, I.B., Diaz, F., Moraes, C.T., Farin, C.E., Hammer, C.J., West, M.D. & Damiani, P. (2000). Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2, 7990.
Lee, B.C., Kim, M.K., Jang, G., Oh, H.J., Yuda, F., Kim, H.J., Shamim, M.H., Kim, J.J., Kang, S.K., Schatten, G. & Hwang, W.S. (2005). Dogs cloned from adult somatic cells. Nature 436, 604.
Li, Z., Sun, X., Chen, J., Liu, X., Wisely, S.M., Zhou, Q., Renard, J.P., Leno, G.H. & Engelhardt, J.F. (2006). Cloned ferrets produced by somatic cell nuclear transfer. Dev. Biol. 293, 439–48.
Liu, S.Z., Zhou, Z.M., Chen, T., Zhang, Y.L., Wen, D.C., Kou, Z.H., Li, Z.D., Sun, Q.Y. & Chen, D.Y. (2004). Blastocysts produced by nuclear transfer between chicken blastodermal cells and rabbit oocytes. Mol. Reprod. Dev. 69, 296302.
Loi, P., Ptak, G., Fulka, J. Jr., Cappai, P. & Clinton, M. (2001). Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotech. 19, 962–4.
Ma, L.B., Yang, L., Hua, S., Cao, J.W., Li, J.X. & Zhang, Y. (2008). Development in vitro and mitochondrial fate of interspecies cloned embryos. Reprod. Dom. Anim. 43, 279.
Narita, J., Tsuchiya, H., Takada, T. & Torii, R. (2007). Cloned blastocysts produced by nuclear transfer from somatic cells in cynomolgus monkeys (Macaca fascicularis). Primate 48, 232–40.
Oh, H.J., Kim, M.K., Jang, G., Kim, H.J., Hong, S.G., Park, J.E., Park, K., Park, C., Sohn, S.H., Kim, D.Y., Shin, N.S. & Lee, B.C. (2008). Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 70, 638–47.
Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Suyapa, B., Dai, Y., Boone, J., Walker, S., Ayares, D.L., Colman, A. & Campbell, K.H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 8690.
Schramm, R.D. & Bavister, B.D. (1996). Development of in-vitro-fertilized primate embryos into blastocysts in a chemically defined, protein-free culture medium. Hum. Reprod. 11, 1690–7.
Shi, D., Lu, F., Wei, Y., Cui, K., Yang, S., Wei, J. & Liu, Q. (2007). Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol. Reprod. 77, 285–91.
Shin, T., Kraemer, D., Pryor, J., Liu, L., Rugila, J., Howe, L., Buck, S., Murphy, K., Lyons, L. & Westhusin, M. (2002). A cat cloned by nuclear transplantation. Nature 415, 859.
Sutovsky, P., Moreno, R.D., Santos, J.R., Dominko, T., Simerly, C. & Schatten, G. (2000). Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of itochondrial inheritance in mammalian embryos. Biol. Reprod. 63, 582–90.
Tao, Y., Liu, J., Zhang, Y., Zhang, M., Fang, J., Han, W., Zhang, Z., Liu, Y., Ding, J. & Zhang, X. (2009). Fibroblast cell line establishment, cryopreservation and interspecies embryos reconstruction in red panda (Ailurus fulgens). Zygote 17, 117–24.
Thongphakdee, A., Numchaisrika, P., Omsongkram, S., Chatdarong, K., Kamolnorranath, S., Dumnui, S. & Techakumphu, M. (2006). In vitro development of marbled cat embryos derived from interspecies somatic cell nuclear transfer. Domest. Anim. 41, 219–26.
Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R. & Yanagimachi, R. (1998). Full term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–74.
Wani, N.A., Wernery, U., Hassan, F.A.H., Wernery, R. & Skidmore, J.A. (2010). Production of the first cloned camel by somatic cell nuclear transfer. Biol. Reprod. 82, 373–79.
Wen, D.C., Yang, C.X., Cheng, Y., Li, J.S., Liu, Z.H., Sun, Q.Y., Zhang, J.X., Lei, L., Wu, Y.Q., Kou, Z.H. & Chen, D.Y. (2003). Comparison of developmental capacity for intra- and interspecies cloned cat (Felis catus) embryos. Mol. Reprod. Dev. 66, 3845.
Wen, D.C., Bi, C.M., Xu, Y., Yang, C.X., Zhu, Z.Y., Sun, Q.Y. & Chen, D.Y. (2005). Hybrid embryos produced by transferring panda or cat somatic nuclei into rabbit MII oocytes can develop to blastocyst in vitro. J. Exp. Zool. 303, 689–97.
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H.S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–3.
Woods, G.L., White, K.L., Vanderwall, D.K., Li, G.P., Aston, K.I., Bunch, T.D. & Meerdo, L.N., Pate, B.J. (2003). A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.
Yang, C.X., Han, Z.M., Wen, D.C., Sun, Q.Y., Zhang, K.Y., Zhang, L.S., Wu, Y.Q., Kou, Z.H & Chen, D.Y. (2003). In vitro development and mitochondrial fate of macaca–rabbit cloned embryos. Mol. Reprod. Dev. 65, 396401.
Yang, C.X., Kou, Z.H., Wang, K., Jiang, Y., Mao, W.W., Sun, Q.Y., Sheng, H.Z. & Chen, D.Y. (2004). Quantitative analysis of mitochondrial DNAs in macaque embryos reprogrammed by rabbit oocytes. Reproduction 127, 201–5.
Yang, C.Y., Li, R.C., Pang, C.Y., Yang, B.Z., Qin, G.S., Chen, M.T., Zhang, X.F., Huang, F.X., Zheng, H.Y., Huang, Y.J. & Liang, X.W. (2010). Study on the inter-subspecies nuclear transfer of river buffalo somatic cell nuclei into swamp buffalo oocyte cytoplasm. Anim. Reprod. Sci. 121, 7883.
Zhao, Z.J., Ouyang, Y.C., Nan, C.L., Lei, Z.L., Song, X.F., Sun, Q.Y. & Chen, D.Y. (2006). Rabbit oocyte cytoplasm supports development of nuclear transfer embryos derived from the somatic cells of the camel and Tibetan antelope. J. Reprod. Dev. 52, 449–59.
Zhao, J.Z., LI, R.C., Cao, H.H., Jiang, M.X., Ouyang, Y.C., Nan, C.L., Lei, Z.L., Song, X.F., Sun, Q.Y. & Chen, D.Y (2007). Interspecies nuclear transfer of tibetan antelope using caprine oocyte as recipient. Mol. Reprod. Dev. 74, 412–9.
Zheng, Y.L., Jiang, M.X., Zhang, Y.L., Sun, Q.Y. & Chen, D.Y. (2004). Effect of oocyte age, cumulus cells and injection methods on in vitro development of intracytoplasmic sperm injection rabbit embryos. Zygote 12, 7580.
Zhou, Q., Renard, J.P., Le, F.G., Brochard, V., Beaujean, N., Cherifi, Y., Fraichard, A. & Cozzi, J. (2003). Generation of fertile cloned rats by regulating oocyte activation. Science 302, 1179.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed