Skip to main content Accessibility help
×
Home

Development of Ca2+-release mechanisms during oocyte maturation of the starfish Asterina pectinifera

  • Isao Takahashi (a1) and Keiichiro Kyozuka (a2) (a1)

Summary

An important step for successful fertilization and further development is the increase in intracellular Ca2+ in the activated oocyte. It has been known that starfish oocytes become increasingly sensitive to inositol 1,4,5-trisphosphate (IP3) during meiotic maturation to exhibit highly efficient IP3-induced Ca2+ release (IICR) by the time of germinal vesicle breakdown (GVBD). However, we noted that the peak level of intracellular Ca2+ increase after insemination is already high in the maturing oocytes before GVBD. Using maturing oocytes before GVBD, we investigated Ca2+ release mechanisms other than IICR. We report here that Ca2+-release mechanisms dependent on nicotinic acid adenine dinucleotide phosphate (NAADP) and nicotinamide adenine dinucleotide (NADP), the precursor of NAADP, became functional prior to the development of IICR mechanisms. As with IP3, but unlike NAADP, the Ca2+ stores responsive to NADP are sensitized during the meiotic maturation induced by 1-methyladenine (1-MA). This suggests that the process may represent a physiological response to the maturation hormone. NADP-dependent Ca2+ release in immature oocytes, however, did not induce oocyte maturation by itself, but was enhanced by the conditions mimicking the increases of intracellular Ca2+ and pH that take place in the maturing oocytes of starfish.

Copyright

Corresponding author

All correspondence to Keiichiro Kyozuka. Research Center for Marine Biology, Asamushi, Graduate School of Life Science, Tohoku University, Asamushi, Aomori 039–3501, Japan. Tel: +81 17 752 3397. Fax: +81 17 752 2765. E-mail: kkyozuka@m.tohoku.ac.jp

References

Hide All
Aarhus, R., Graeff, R.M., Dickey, D.M., Walseth, T.F. & Lee, H.C. (1995). ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium mobilizing metabolite from NADP. J. Biol. Chem. 270, 30327–33.
Ayabe, T., Kopf, G.S. & Schultz, R.M. (1995). Regulation of mouse egg activation: presence of ryanodine receptors and effects of microinjected ryanodine and cyclic ADP ribose on uninseminated and inseminated eggs. Development 121, 2233–44.
Berridge, M.J. (2009). Inositol trisphosphate and calcium signalling mechanisms. Biochim. Biophys. Acta 793, 933–40.
Billington, R.A., Ho, A. & Genazzani, A.A. (2002). Nicotinic acid adenine dinucleotide phosphate (NAADP) is present at micromolar concentrations in sea urchin spermatozoa. J. Physiol. 544, 107–12.
Carroll, D.J., Ramarao, C.S., Mehlmann, L.M., Roche, S., Terasaki, M. & Jaffe, L.A. (1997). Calcium release at fertilization in starfish eggs is mediated by phospholipase C gamma. J. Cell Biol. 138, 1303–11.
Chiba, K., Kado, R.T. & Jaffe, L.A. (1990). Development of calcium release mechanisms during starfish oocyte maturation. Dev. Biol. 140, 300–6.
Chun, J.T. & Santella, L. (2009). The actin cytoskeleton in meiotic maturation and fertilization of starfish eggs. Biochem. Biophys. Res. Commun. 384, 141–3.
Chun, J.T., Limatola, N., Vasilev, F. & Santella, L. (2014). Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules. Biochem. Biophys. Res. Commun. 450, 1166–74.
Churchill, G.C., O'Neill, J.S., Masgrau, R., Patel, S., Thomas, J.M., Genazzani, A.A. & Galione, A. (2003). Sperm deliver a new messenger: NAADP. Curr. Biol. 13, 125–8.
Clapper, D.L., Walseth, T.F., Dargie, P.J. & Lee, H.C. (1987). Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. Biol. Chem. 262, 9561–8.
Costache, V., McDougall, A. & Dumollard, R. (2014). Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochem. Biophys. Res. Commun. 450, 1175–81.
Crossley, I., Whalley, T. & Whitaker, M. (1991). Guanosine 5′-thiotriphosphate may stimulate phosphoinositide messenger production in sea urchin eggs by a different route than the fertilizing sperm. Cell. Regul. 2, 121–33.
Deguchi, R. & Osanai, K. (1994). Repetitive intracellular Ca2+ increases at fertilization and the role of Ca2+ in meiosis reinitiation from the first metaphase in oocytes of marine bivalves. Dev. Biol. 163, 6274.
Deguchi, R., Osanai, K. & Morisawa, M. (1996). Extracellular Ca2+ entry and Ca2+ release from inositol 1,4,5-trisphosphate-sensitive stores function at fertilization in oocytes of the marine bivalve Mytilus edulis. Development 122, 3651–60.
El-Jouni, W., Jang, B., Haun, S. & Machaca, K. (2005). Calcium signaling differentiation during Xenopus oocyte maturation. Dev. Biol. 288, 514–25.
Epel, D., Patton, C., Wallace, R.W. & Cheung, W.Y. (1981). Calmodulin activates NAD kinase of sea urchin eggs: an early event of fertilization. Cell 23, 543–9.
Epel, D. (1990). The initiation of development at fertilization. Cell. Differ. Dev. 29, 112.
Fujimori, F. & Hirai, S. (1979). Differences in starfish oocyte susceptibility to polyspermy during the course of maturation. Biol. Bull. 157, 249–57.
Galione, A., McDougall, A., Busa, W.B., Willmott, N., Gillot, I. & Whitaker, M. (1993). Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science 261, 348–52.
Guerrier, P. & Doree, M. (1975). Hormonal control of reinitiation of meiosis in starfish. The requirement of 1-methyladenine during nuclear maturation. Dev. Biol. 47, 341–8.
Giusti, A.F., Xu, W., Hinkle, B., Terasaki, M. & Jaffe, L.A. (2000). Evidence that fertilization activates starfish eggs by sequential activation of a Src-like kinase and phospholipase C gamma. J. Biol. Chem. 275, 16788–94.
Harada, K., Oita, E. & Chiba, K. (2003). Metaphase I arrest of starfish oocytes induced via the MAP kinase pathway is released by an increase of intracellular pH. Development 130, 4581–6.
Harada, Y., Kawazoe, M., Eto, Y., Ueno, S. & Iwao, Y. (2011). The Ca2+ increase by the sperm factor in physiologically polyspermic newt fertilization: its signaling mechanism in egg cytoplasm and the species-specificity. Dev. Biol. 351, 266–76.
Hirohashi, N., Harada, K. & Chiba, K. (2008). Hormone-induced cortical maturation ensures the slow block to polyspermy and does not couple with meiotic maturation in starfish. Dev. Biol. 318, 194202.
Iwasaki, H., Chiba, K., Uchiyama, T., Yoshikawa, F., Suzuki, F., Ikeda, M., Furuichi, T. & Mikoshiba, K. (2002). Molecular characterization of the starfish inositol 1,4,5-trisphosphate receptor and its role during oocyte maturation and fertilization. J. Biol. Chem. 277, 2763–72.
Jaffe, L.A., Giusti, A.F., Carroll, D.J. & Foltz, K.R. (2001). Ca2+ signalling during fertilization of echinoderm eggs. Semin. Cell. Dev. Biol. 12, 4551.
Kanatani, H., Shirai, H., Nakanishi, K. & Kurokawa, T. (1969). Isolation and identification of meiosis inducing substance in starfish. Nature 221, 273–4.
Kashir, J., Deguchi, R., Jones, C., Coward, K. & Stricker, S.A. (2013). Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol. Reprod. Dev. 80, 787815.
Kishimoto, T. (1986). Microinjection and cytoplasmic transfer in starfish oocytes. Methods Cell. Biol. 27, 379–94.
Kyozuka, K., Chun, J.T., Puppo, A., Gragnaniello, G., Garante, E. & Santella, L. (2008) Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes. Dev. Biol. 320, 426–35.
Lange, K. (1999). Microvillar Ca++ signaling: a new view of an old problem. J. Cell. Physiol. 180, 1934.
Lee, H.C., Walseth, T.F., Bratt, G.T., Hayes, R.N. & Clapper, D.L. (1989). Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J. Biol. Chem. 264, 1608–15.
Lee, H.C., Aarhus, R. & Walseth, T.F. (1993). Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 261, 352–5.
Lee, H.C. & Aarhus, R. (1995). A derivative of NADP mobilizes calcium stores insensitive to trisphosphate and cyclic ADP-ribose. J. Biol. Chem. 270, 2152–7.
Lim, D., Kyozuka, K., Gragnaniello, G., Carafoli, E. & Santella, L. (2001). NAADP+ initiates the Ca2+ response during fertilization of starfish oocytes. FASEB J. 15, 2257–67.
Lim, D., Lange, K. & Santella, L. (2002) Activation of oocytes by latrunculin A. FASEB J. 16, 1050–6.
Lim, D., Ercolano, E., Kyozuka, K., Nusco, G.A., Moccia, F., Lange, K. & Santella, L. (2003). The M-phase-promoting factor modulates the sensitivity of the Ca2+ stores to inositol 1,4,5-trisphosphate via the actin cytoskeleton. J. Biol. Chem. 278, 42505–14.
Limatola, N., Chun, J.T., Kyozuka, K. & Santella, L. (2015). Novel Ca2+ increases in the maturing oocytes of starfish during the germinal vesicle breakdown. Cell. Calcium 58, 500–10.
McCulloh, D.H., Ivonnet, P.I., Landowne, D. & Chambers, E.L. (2000). Calcium influx mediates the voltage-dependence of sperm entry into sea urchin eggs. Dev. Biol. 223, 449–62.
Matsumoto, M., Solzin, J., Helbig, A., Hagen, V., Ueno, S., Kawase, O., Maruyama, Y., Ogiso, M., Godde, M., Minakata, H., Kaupp, U.B., Hoshi, M. & Weyand, I. (2003). A sperm-activating peptide controls a cGMP-signaling pathway in starfish sperm. Dev. Biol. 260, 314–24.
Miyazaki, S., Shirakawa, H., Nakada, K. & Honda, Y. (1993). Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 6278.
Miyazaki, S. (2006). Thirty years of calcium signals at fertilization. Dev. Biol. 17, 233243.
Moccia, F., Lim, D., Nusco, G.A., Ercolano, E. & Santella, L. (2003) NAADP activates a Ca2+ current that is dependent on F-actin cytoskeleton. FASEB J. 17,1907–9.
Moccia, F., Nusco, G.A., Lim, D., Kyozuka, K. & Santella, L. (2006). NAADP and InsP3 play distinct roles at fertilization in starfish oocytes. Dev. Biol. 294, 2438.
Nakano, T., Deguchi, R. & Kyozuka, K. (2014). Intracellular calcium signaling in the fertilized eggs of Annelida. Biochem. Biophys. Res. Commun. 450, 1188–94.
Nemoto, S.I. (1982). Nature of the 1-methyladenine-requiring phase in maturation of starfish oocytes. Dev. Growth Differ. 24, 429–42.
Nusco, G.A., Lim, D., Sabala, P. & Santella, L. (2002). Ca2+ response to cADPr during maturation and fertilization of starfish oocytes. Biochem. Biophys. Res. Commun. 290, 1015–21.
Puppo, A., Chun, J.T., Gragnaniello, G., Garante, E. & Santella, L. (2008) Alteration of the cortical actin cytoskeleton deregulates Ca2+ signaling, monospermic fertilization, and sperm entry. PLoS One 3, e3588.
Santella, L. & Kyozuka, K. (1994). Reinitiation of meiosis in starfish oocytes requires an increase in nuclear Ca2+ . Biochem. Biophys. Res. Commun. 203, 674–80.
Santella, L., De Riso, L., Gragnaniello, G. & Kyozuka, K. (1998) Separate activation of the cytoplasmic and nuclear calcium pools in maturing starfish oocytes. Biochem. Biophys. Res. Commun. 252, 14.
Santella, L., De Riso, L., Gragnaniello, G. & Kyozuka, K. (1999). Cortical granule translocation during maturation of starfish oocytes requires cytoskeletal rearrangement triggered by InsP3-mediated Ca2+ release. Exp. Cell Res. 248, 567–74.
Santella, L., Kyozuka, K., Genazzani, A.A., De Riso, L. & Carafoli, E. (2000). Nicotinic acid adenine dinucleotide phosphate-induced Ca2+ release. Interactions among distinct Ca2+ mobilizing mechanisms in starfish oocytes. J. Biol. Chem. 275, 8301–6.
Santella, L., Lim, D. & Moccia, F. (2004). Calcium and fertilization: the beginning of life. Trends Biochem. Sci. 29, 400–8.
Santella, L., Vasilev, F. & Chun, J.T. (2012). Fertilization in echinoderms. Biochem. Biophys. Res. Commun. 425, 588–94.
Santella, L., Limatola, N. & Chun, J. T. (2015). Calcium and actin in the saga of awakening oocytes. Biochem. Biophys. Res. Commun. 460, 104–13.
Saunders, C.M., Larman, M.G., Parrington, J., Cox, L.J., Royse, J., Blayney, L.M., Swann, K. & Lai, F.A. (2002). PLCζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129, 3533–44.
Schroeder, T.E. & Stricker, S.A. (1983). Morphological changes during maturation of starfish oocytes: surface ultrastructure and cortical actin. Dev. Biol. 98, 373–84.
Shen, S.S. & Buck, W.R. (1993). Sources of calcium in sea urchin eggs during the fertilization response. Dev. Biol. 157, 157–69.
Steinhardt, R.A. & Epel, D. (1974). Activation of sea-urchin eggs by a calcium ionophore. Proc. Natl. Acad. Sci. USA 71, 1915–9.
Stricker, S.A., Centonze, V.E. & Melendez, R.F. (1994). Calcium dynamics during starfish oocyte maturation and fertilization. Dev. Biol. 166, 3458.
Stricker, S.A. (1995). Time-lapse confocal imaging of calcium dynamics in starfish embryos. Dev. Biol. 170, 496518.
Stricker, S.A. (1996). Repetitive calcium waves induced by fertilization in the nemertean worm Cerebratulus lacteus . Dev. Biol. 176, 243–63.
Vacquier, V.D. (1975). The isolation of intact cortical granules from sea urchin eggs: calcium ions trigger granule discharge. Dev. Biol. 43, 6274.
Vasilev, F., Chun, J.T., Gragnaniello, G., Garante, E. & Santella, L. (2012). Effects of ionomycin on egg activation and early development in starfish. PLoS One 7, e39231.
Whalley, T., McDougall, A., Crossley, I., Swann, K. & Whitaker, M. (1992). Internal calcium release and activation of sea urchin eggs by cGMP are independent of the phosphoinositide signaling pathway. Mol. Biol. Cell. 3, 373–83.
Whitaker, M. (2006). Calcium at fertilization and in early development. Physiol. Rev. 86, 2588.
Wilding, M., Russo, G.L., Marino, M., Grumetto, L., De Simone, M.L., Tosti, E. & Dale, B. (1998a). Activation of Ciona intestinalis at fertilization is controlled by nicotinamide nucleotide metabolism, pp. 121–3. New York: Plenum Press.
Wilding, M., Russo, G.L., Galione, A., Marino, M. & Dale, B. (1998b). ADP-ribose gates the fertilization channel in ascidian oocytes. Am. J. Physiol. 275, 1277–83.
Yoshida, M., Sensui, N., Inoue, T., Morisawa, M. & Mikoshiba, K. (1998). Role of two series of Ca2+ oscillations in activation of ascidian eggs. Dev. Biol. 203, 122–33.
Zucker, R.S., Steinhardt, R.A. & Winkler, M.M. (1978). Intracellular calcium release and the mechanisms of parthenogenetic activation of the sea urchin egg. Dev. Biol. 65, 285–95.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed