Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T10:43:06.359Z Has data issue: false hasContentIssue false

Determination of new types of DNA lesions in human sperm

Published online by Cambridge University Press:  01 February 2008

C. Badouard
Affiliation:
Laboratoire des Lésions des Acide Nucléiques LCIB UMR-E 3 CEA-UJF DRFMC, CEA Grenoble, 17 rue des martyrs, 38054 Grenoble Cedex 9.France.
Y. Ménézo*
Affiliation:
Laboratoire d'Eylau, 55 rue St Didier, 75116 ParisFrance.
G. Panteix
Affiliation:
Laboratoire d'Eylau, 55 rue St Didier, 75116 ParisFrance.
J.L. Ravanat
Affiliation:
Laboratoire Marcel Merieux. Avenue Tony Garnier, 69007 Lyon, France.
T. Douki
Affiliation:
Laboratoire des Lésions des Acide Nucléiques LCIB UMR-E 3 CEA-UJF DRFMC, CEA Grenoble, 17 rue des martyrs, 38054 Grenoble Cedex 9.France.
J. Cadet
Affiliation:
Laboratoire des Lésions des Acide Nucléiques LCIB UMR-E 3 CEA-UJF DRFMC, CEA Grenoble, 17 rue des martyrs, 38054 Grenoble Cedex 9.France.
A. Favier
Affiliation:
Laboratoire des Lésions des Acide Nucléiques LCIB UMR-E 3 CEA-UJF DRFMC, CEA Grenoble, 17 rue des martyrs, 38054 Grenoble Cedex 9.France.
*
1All correspondence to: Yves Ménézo, Laboratoire d'Eylau, 55 rue St Didier, 75116 ParisFrance. Tel: +33 607419368. Fax: +33 153706494. e-mail: yves.menezo@club-internet.fr

Summary

Careful attention has been focused recently on DNA quality in human IVF. Therefore a variety of methods has been developed to evaluate DNA integrity, especially concerning fragmentation. Using liquid chromatography and mass spectrometry (LC/MS/MS) for our best sperm samples, we have established reference values for several oxidative lesions, in order to gain insights into the cause of DNA lesions. Besides 8-oxodeoxyguanosine, we found rather high levels of two ethenonucleosides: 1,N6-ethenoadenosine and 1,N2-ethenoguanosine. These compounds probably arise from a reaction with 4-hydroxy-2-nonenal, the main aldehyde compound released during lipid peroxidation, or after occupational exposure to vinyl chloride. The quantity of chlorinated bases detected is low. All of this decay has to be repaired by the oocytes at the time of fertilization or immediately after. This aspect should not be overlooked in assisted reproductive technology, in order to understand risks and limitations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, A., Nallela, K.P., Allamaneni, S.S. & Said, T.M. (2004). Role of antioxidants in treatment of male infertility: an overview of literature. Reprod. BioMed. Online 8, 616–27.CrossRefGoogle Scholar
Aitken, R.J, Harkiss, D. & Buckingham, D.W. (1993). Analysis of lipid peroxidation mechanism in human spermatozoa. Mol. Reprod. Dev. 35, 302–15.CrossRefGoogle ScholarPubMed
Bedford, J.M. & Calvin, H.I. (1974) The occurrence and possible functional significance of S–S-crosslinks in sperm heads, with particular reference to eutherian mammals. J. Exp. Zoo.l 188, 137–55.CrossRefGoogle ScholarPubMed
Bessho, T., Tano, K., Kasai, H., Ohtsuka, E. & Nishimura, S. (1993) Evidence for two DNA repair enzymes for 8-hydroxyguanosine (7–8 dihydro-8-oxoguanine) in human cells. J. Biol. Chem. 268, 19416–21.CrossRefGoogle Scholar
Badouard, C., Masuda, M., Nishino, H., Cadet, J., Favier, A. & Ravanat, J-L. (2005a). Detection of chlorinated DNA and RNA nucleosides by HPLC coupled to tandem mass spectrometry as potential biomarkers of inflammation. J. Chrom. 827, 2631.CrossRefGoogle ScholarPubMed
Badouard, C., Douki, T., Faure, P., Cadet, J. & Favier, A. (2005b). DNA lesions as biomarkers of inflammation and oxidative stress: a preliminary evaluation. In: Free Radical sans Diseases: Gene Expression, Cellular Metabolism and Physiopathology, T. Grune (ed.) IOS Press, NATO science series, pp. 19.Google Scholar
Boiteux, S. & Radicella, J.P. (2000). The human OGG1 gene: structure, functions and its implication in the process of carcinogenesis. Arch. Biochem. Biophys. 377, 18.CrossRefGoogle ScholarPubMed
Cline, S.D. & Hanawalt, P.C. (2003). Who's on first in the cellular response to DNA damage? Nat. Rev. Mol. Cell. Biol. 4, 361–72.CrossRefGoogle ScholarPubMed
Cline, S.D., Riggins, J.N., Tornaletti, S., Marnett, L.J. & Hanawalt, P.C. (2004). Malondialdehyde adducts in DNA arrest transcription by T7 RNA polymerase and mammalian RNA polymerase. Proc. Natl. Acad. Sci. USA. New York 101, 7275–80.CrossRefGoogle ScholarPubMed
Douki, T., Odin, F., Caillat, S., Favier, A. & Cadet, J. (2004). Predominance of 1,N2-propano-2′-deoxyguanosine adduct among 4-hydroxynonenal-induced DNA lesions. Free Radical Biol. Med. 37, 6270.CrossRefGoogle Scholar
Evenson, D., Larson, K. & Jost, L.K. (2002). Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparison with other techniques. J. Androl. 23, 2543.CrossRefGoogle ScholarPubMed
Feng, Z., Hu, W. & Tang, M.S. (2004). Trans-4-hydroxy-2-nonenal inhibits nucleotide excision repair in human cells: a possible mechanism for lipid peroxidation-induced carcinogenesis. Proc. Natl. Acad. Sci. USA 101, 8595–602.CrossRefGoogle Scholar
Henkel, R., Hajimohammad, M., Stalf, T., Hoogendijk, C., Mehnert, C., Menkveld, R., Gips, H., Schill, W.B. & Kruger, T.F. (2004). Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil. Steril. 81, 965–72.CrossRefGoogle ScholarPubMed
Janny, L. & Menezo, Y.J.R. (1994). Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol. Reprod. Dev. 38, 3642.CrossRefGoogle Scholar
Kodama, H., Yamaguchi, R., Fukuda, J. et al. (1997). Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil. Steril. 68, 519–24.CrossRefGoogle ScholarPubMed
Lopes, S., Sun, J., Jurisicova, A. & Casper, R.F. (1998a). Semen deoxyribonucleic acid fragmentation is increased in poor quality semen samples and correlates with failed fertilisation in intracytoplasmic sperm injection. Fertil. Steril. 69, 528–32.CrossRefGoogle ScholarPubMed
Lopes, S., Jurisicova, A., Sun, J.G., Meriano, J. & Casper, R.F. (1998b). Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum. Reprod. 13, 896900.CrossRefGoogle ScholarPubMed
Menezo, Y., Hazout, A., Panteix, G., Robert, F., Rollet, J., Cohen-Bacrit, P., Chapuis, F., Clement, P. & Benkhalifa, M. (2007). Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod. BioMed. Online 14, 318–21.CrossRefGoogle ScholarPubMed
Menezo, Y. & Dale, B. (1995). Paternal contribution to successful embryogenesis. Hum. Reprod. 10, 1326–8.CrossRefGoogle ScholarPubMed
Morozumi, K. & Yanagimachi, R. (2005). Incorporation of the acrosome into the oocytes during intracytoplasmic sperm injection could be potentially hazardous to embryo development. Proc. Natl. Acad. Sci. USA 102, 14209–14.CrossRefGoogle ScholarPubMed
Oger, I., Da Cruz, Ch., Panteix, G. & Menezo, Y.J.R. (2003). Evaluating human sperm DNA integrity: relationship between 8-hydroxydeoxyguanosine quantification and the sperm chromatin structure assay. Zygote 11, 367–71.CrossRefGoogle ScholarPubMed
Ravanat, J-L., Douki, T., Duez, P., Gremaud, E., Herbert, K., Hofer, T., Lasserre, L., Saint Pierre, C., Favier, A. & Cadet, J. (2002). Cellular background level of 8-oxo-7,8-dihydro-2′-deoxyguanosine: an isotope based method to evaluate artifactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis 23, 1911–8.CrossRefGoogle Scholar
Ron-El, R., Nachum, H., Herman, A., Raziel, A., Nachum, H. & Caspi, E. (1991). Delayed fertilization and poor embryonic development associated with impaired semen quality. Fertil. Steril. 55, 338–44.CrossRefGoogle ScholarPubMed
Ursini, F., Heim, S., Kiess, M., Maiorino, M., Roveri, A., Wissing, J. & Flohe, L. (1999). Dual function of the selenoprotein PHGPx during sperm maturation. Science 285, 1393–6.CrossRefGoogle ScholarPubMed
Talaska, G., Al-Zoughool, M., Malaveille, C., Fiorini, L., Schumann, B., Vietas, J., Peluso, M., Munnia, A., Bianchini, M. & Allegro, G. (2006). Randomized controlled trial: effects of diet on DNA damage in heavy smokers. Mutagenesis 21, 179–83.CrossRefGoogle ScholarPubMed
Ward, W.S., Kishikawa, H., Yanagimachi, H.A. & Yanagimachi, R. (2000). Further evidence that sperm nuclear proteins are necessary for the embryogenesis. Zygote 8, 51–6.CrossRefGoogle ScholarPubMed
Wood, R.D., Mitchell, M., Sgouros, J. & Lindhal, T. (2001). Human DNA repair genes. Science 291, 1284–9.CrossRefGoogle ScholarPubMed
Zeng, F., Baldwin, D.A. & Shultz, R.A. (2004). Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–96.CrossRefGoogle ScholarPubMed
Zenzes, M.T. (2000). Smoking and reproduction: gene damage to human gametes and embryos. Hum. Reprod. Update 6, 122–31.CrossRefGoogle ScholarPubMed