Skip to main content Accessibility help
×
Home

Comparison between electroporation and polyfection in pig sperm: efficiency and cell viability implications

  • Zigomar da Silva (a1), Andressa Pereira de Souza (a1) (a2), José Rodrigo Claudio Pandolfi (a3), Francisco Noé da Fonseca (a3), Carlos André da Veiga Lima-Rosa (a4) and Mariana Groke Marques (a3)...

Summary

The aim of this study was to optimize protocols for electroporation (EP) and polyfection (PLF) using polyethyleneimine (PEI) for pig sperm transfection and to determine which method was the most efficient. For EP standardization, different voltages, amounts and times of electric pulses were tested using propidium iodide (PI) as reporter. For PLF standardization, different concentrations of fluorescein isothiocyanate (FITC)-labelled PEI (PEI/FITC) were incubated with sperm for different periods of time. Flow cytometry was performed to evaluate the best protocol in terms of cell viability, including cytoplasmic membrane, acrosome, chromatin integrities and mitochondrial potential using the FITC probe, PI, acridine orange (AO) and JC1. Transfections with the plasmid pmhyGENIE-5 were carried out under optimum conditions for each procedure (EP: 500 volts, 500 μs and two pulses; PLF: PEI 0.5 mg/ml and incubation time 10 min). Transfection efficacy was assessed by fluorescence in situ hybridization (FISH). A lower transfection rate was observed for sperm in the control group (17.8%) compared with EP (36.7%), with PLF (76.8%) being the most efficient. These results suggest that the EP and PEI could be an efficient and low cost transfection method for swine sperm. Notably, treated cells showed higher plasmatic the membrane damage (PMD) and/or acrosome damage (AD) indexes, therefore the combination of this procedure with biotechniques that facilitate fecundation (i.e. in vitro fertilization or intracytoplasmic sperm injection) or even inclusion of antioxidant or anti-apoptotic drugs to improve spermatozoa viability would be important.

Copyright

Corresponding author

Author for correspondence: Mariana Grokes Marques. Brazilian Agricultural Research Corporation. Embrapa Swine and Poultry, BR-153, Km 110, Tamandua District, Postal Box: 321 CEP: 89715–899, Concórdia, SC. Brazil. Tel: +55 493441 0400. Fax: +55 493441 0497. E-mail: mariana.marques@embrapa.br

References

Hide All
Bieber, T, Meissner, W, Kostin, S, Niemann, A Elsasser, H-P (2002) Intracellular route and transcriptional competence of polyethyleneimine–DNA complexes. J Control Release 82, 441454.
Boe-Hansen, GB, Morris, ID, Ersboll, AK, Greve, T Christensen, P (2005) DNA integrity in sexed bull sperm assessed by neutral comet assay and sperm chromatin structure assay. Theriogenology 63, 17891802.
Bou, G, Sun, M, Lv, M, Zhu, J, Li, H, Wang, J, Li, L, Liu, Z, Zheng, Z, He, W, Kong, Q Liu, Z (2014) A pre-breeding screening program for transgenic boars based on fluorescence in situ hybridization assay. Transgenic Res 23, 679689.
Boussif, O, Lezoualc’h, F, Zanta, MA, Mergny, MD, Scherman, D, Demeneix, B Behr, JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethyleneimine. Proc Natl Acad Sci USA 92, 72977301.
Breunig, M, Lungwitz, U, Liebl, R Goepferich, A (2007) Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci USA 104, 1445414459.
CBRA (1998) Manual para exame andrológico e avaliação de sêmen animal, Colégio Brasileiro de Reprodução Animal: Belo Horizonte.
da Silva, Z, de Souza, AP, Superti, BFV, Lima-Rosa, CAV Marques, MG (2017) Medium and temperature optimization for the recovery of membrane integrity of swine spermatozoa submitted to electroporation. In Proceedings of the 30th Annual Meeting of the Brazilian Embryo Technology Society (SBTE). Cabo de Santo Agostinho, PE, Vol. 14 Animal Reproduction, 877 pp.
Dang, SP, Wang, RX, Qin, MD, Zhang, Y, Gu, YZ, Wang, MY, Yang, QL, Li, XR Zhang, XG (2011) A novel transfection method for eukaryotic cells using polyethyleneimine coated albumin microbubbles. Plasmid 66, 1925.
Fang, G-F, Chen, W, Wang, S-D, Wang, Y-D, Li, C-H, Zhu, H-L, Wang, H Zeng, Y-Q (2017) Generation of transgenic pigs overexpressing PID1 gene mediated by magnetic nanoparticles and sperm. Asian J Anim Vet Adv 12, 161168.
Feitosa, WB, Milazzotto, MP, Simoes, R, Rovegno, M, Nicacio, AC, Nascimento, AB, Goncalves, JS, Visintin, JA Assumpcao, ME (2009) Bovine sperm cells viability during incubation with or without exogenous DNA. Zygote 17, 315320.
Fischer, D, Bieber, T, Li, Y, Elsässer, H-P Kissel, T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethyleneimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16, 12731279.
Francolini, M, Lavitrano, M, Lamia, CL, French, D, Frati, L, Cotelli, F Spadafora, C (1993) Evidence for nuclear internalization of exogenous DNA into mammalian sperm cells. Mol Reprod Dev 34, 133139.
Gagne, MB, Pothier, F Sirard, MA (1991) Electroporation of bovine spermatozoa to carry foreign DNA in oocytes. Mol Reprod Dev 29, 615.
Godbey, WT Mikos, AG (2001) Recent progress in gene delivery using non-viral transfer complexes. J Control Res 72, 115125.
Horan, R, Powell, R, Bird, JM, Gannon, F Houghton, JA (1992) Effects of electropermeabilization on the association of foreign DNA with pig sperm. Arch Androl 28, 105114.
Hsu, CY Uludag, H (2012) A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethyleneimine. Nat Protoc 7, 935945.
Hunter, AC Moghimi, SM (2010) Cationic carriers of genetic material and cell death: a mitochondrial tale. Biochim Biophys Acta 1797, 12031209.
Kafil, V Omidi, Y (2011) Cytotoxic impacts of linear and branched polyethyleneimine nanostructures in A431 cells. BioImpacts: BI 1, 2330.
Kurz, A, Viertel, D, Herrmann, A Muller, K (2005) Localization of phosphatidylserine in boar sperm cell membranes during capacitation and acrosome reaction. Reproduction 130, 615626.
Lavitrano, M, Forni, M, Bacci, ML, Di Stefano, C, Varzi, V, Wang, H Seren, E (2003) Sperm mediated gene transfer in pig: selection of donor boars and optimization of DNA uptake. Mol Reprod Dev 64, 284291.
Lavitrano, M, Maione, B, Forte, E, Francolini, M, Sperandio, S, Testi, R Spadafora, C (1997) The interaction of sperm cells with exogenous DNA: a role of CD4 and major histocompatibility complex class II molecules. Exp Cell Res 233, 5662.
Pramod, RK, Kumar, R Mitra, A (2016) Transgenic expression of green fluorescent protein in caprine embryos produced through electroporation-aided sperm-mediated gene transfer. Gene 576, 505511.
Rieth, A, Pothier, F Sirard, MA (2000) Electroporation of bovine spermatozoa to carry DNA containing highly repetitive sequences into oocytes and detection of homologous recombination events. Mol Reprod Dev 57, 338345.
Saito, M Saitoh, H (2012) Labeling of polyethyleneimine with fluorescent dye to image nucleus, nucleolus, and chromosomes in digitonin-permeabilized HeLa cells. Biosci Biotechnol Biochem 76, 17771780.
Schackmann, RW, Christen, R Shapiro, BM (1981) Membrane potential depolarization and increased intracellular pH accompany the acrosome reaction of sea urchin sperm. Proc Natl Acad Sci USA 78, 60666070.
Simões, R, Feitosa, WB, Milazzotto, MP, Nicacio, AC, Barros, FRO d, Gonçalves, JSDA, Marques, MG, Visintin, JA Assumpção, MEODÁ (2015) Comparison of different methods for exogenous DNA uptake by bovine spermatozoa. Braz. J Vet Res Anim Sci 52, 78.
Tros de Ilarduya, C, Sun, Y Duzgunes, N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40, 159170.
Tsai, H-J (2000) Electroporated sperm mediation of a gene transfer system for finfish and shellfish. Mol Reprod Dev 56, 4.
Zoraqi, G Spadafora, C (1997) Integration of foreign DNA sequences into mouse sperm genome. DNA Cell Biol 16, 291300.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed