Skip to main content Accessibility help

Characterization of freshly retrieved preantral follicles using a low-invasive, mechanical isolation method extended to different ruminant species

  • A. Langbeen (a1), E.P.A. Jorssen (a2), E. Fransen (a3), A.P.A. Rodriguez (a4), M. Chong García (a2) (a5), J.L.M.R. Leroy (a2) and P.E.J. Bols (a2)...


Due to the increased interest in preantral follicular physiology, non-invasive retrieval and morphological classification are crucial. Therefore, this study aimed: (1) to standardize a minimally invasive isolation protocol, applicable to three ruminant species; (2) to morphologically classify preantral follicles upon retrieval; and (3) to describe morphological features of freshly retrieved follicles compared with follicle characteristics using invasive methods. Bovine, caprine and ovine ovarian cortex strips were retrieved from slaughterhouse ovaries and dispersed. This suspension was filtered, centrifuged, re-suspended and transferred to a Petri dish, to which 0.025 mg/ml neutral red (NR) was added to assess the viability of the isolated follicles. Between 59 and 191 follicles per follicle class and per species were collected and classified by light microscopy, based on follicular cell morphology. Subsequently, follicle diameters were measured. The proposed isolation protocol was applicable to all three species and showed a significant, expected increase in diameter with developmental stage. With an average diameter of 37 ± 5 μm for primordial follicles, 47 ± 6.3 μm for primary follicles and 67.1 ± 13.1 μm for secondary follicles, no significant difference in diameter among the three species was observed. Bovine, caprine and ovine follicles (63, 59 and 50% respectively) were graded as viable upon retrieval. Using the same morphological characteristics as determined by invasive techniques [e.g. haematoxylin–eosin (HE) sections], cumulus cell morphology and follicle diameter could be used routinely to classify freshly retrieved follicles. Finally, we applied a mechanical, minimally invasive, follicle isolation protocol and extended it to three ruminant species, yielding viable preantral follicles without compromising further in vitro processing and allowing routine follicle characterization upon retrieval.


Corresponding author

All correspondence to: A. Langbeen. University of Antwerp, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Universiteitsplein 1, Gebouw U, B-2610 Wilrijk, Belgium. Tel: +32 3 265 23 98. Fax: +32 3 265 24 33. e-mail:


Hide All
Abir, R., Roizman, P., Fisch, B., Nitke, S., Okon, E., Orvieto, R. & Ben Rafael, Z. (1999). Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum. Reprod. 14, 1299–301.
Abir, R., Fisch, B., Nitke, S., Okon, E., Raz, A. & Ben Rafael, Z. (2001). Morphological study of fully and partially isolated early human follicles. Fertil. Steril. 75, 141–6.
Abir, R., Nitke, S., Ben-Haroush, A. & Fisch, B. (2006). In vitro maturation of human primordial ovarian follicles: clinical significance, progress in mammals, and methods for growth evaluation. Histol. Histopathol. 21, 887–98.
Aerts, J.M. & Bols, P.E. (2010). Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: Folliculogenesis and pre-antral follicle development. Reprod. Domest. Anim. 45, 171–9.
Aerts, J.M., De Clercq, J.B., Andries, S., Leroy, J.L., Van Aelst, S. & Bols, P.E. (2008a). Follicle survival and growth to antral stages in short-term murine ovarian cortical transplants after cryologic solid surface vitrification or slow-rate freezing. Cryobiology 57, 163–9.
Aerts, J.M., Martinez-Madrid, B., Flothmann, K., De Clercq, J.B., Van Aelst, S. & Bols, P.E. (2008b). Quantification and viability assessment of isolated bovine primordial and primary ovarian follicles retrieved through a standardized biopsy pick-up procedure. Reprod. Domest. Anim. 43, 360–6.
Aerts, J.M., Martinez-Madrid, B., Leroy, J.L., Van Aelst, S. & Bols, P.E. (2010). Xenotransplantation by injection of a suspension of isolated preantral ovarian follicles and stroma cells under the kidney capsule of nude mice. Fertil. Steril. 94, 708–14.
Amorim, C.A., Rodrigues, A.P., Lucci, C.M., Figueiredo, J.R. & Goncalves, P.B. (2000). Effect of sectioning on the number of isolated ovine preantral follicles. Small Rumin. Res. 37, 269–77.
Braw-Tal, R. (2002). The initiation of follicle growth: the oocyte or the somatic cells? Mol. Cell. Endocrinol. 187, 11–8.
Braw-Tal, R. & Yossefi, S. (1997). Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. J. Reprod. Fertil. 109, 165–71.
Bukovsky, A., Caudle, M. R., Svetlikova, M., Wimalasena, J., Ayala, M.E. & Dominguez, R. (2005). Oogenesis in adult mammals, including humans: a review. Endocrine 26, 301–6.
Campbell, B.K., Souza, C., Gong, J., Webb, R., Kendall, N., Marsters, P., Robinson, G., Mitchell, A., Telfer, E.E. & Baird, D.T. (2003). Domestic ruminants as models for the elucidation of the mechanisms controlling ovarian follicle development in humans. Reprod. Suppl. 61, 429–43.
Carambula, S.F., Goncalves, P.B., Costa, L.F., Figueiredo, J.R., Wheeler, M.B., Neves, J.P. & Mondadori, R.G. (1999). Effect of fetal age and method of recovery on isolation of preantral follicles from bovine ovaries. Theriogenology 52, 563–71.
Cecconi, S., Barboni, B., Coccia, M. & Mattioli, M. (1999). In vitro development of sheep preantral follicles. Biol. Reprod. 60, 594601.
Chambers, E.L., Gosden, R.G., Yap, C. & Picton, H.M. (2010). In situ identification of follicles in ovarian cortex as a tool for quantifying follicle density, viability and developmental potential in strategies to preserve female fertility. Hum. Reprod. 25, 2559–68.
Demeestere, I., Delbaere, A., Gervy, C., Van Den Bergh, M., Devreker, F. & Englert, Y. (2002). Effect of preantral follicle isolation technique on in-vitro follicular growth, oocyte maturation and embryo development in mice. Hum. Reprod. 17, 2152–9.
Dolmans, M.M., Michaux, N., Camboni, A., Martinez-Madrid, B., Van Langendonckt, A., Nottola, S.A. & Donnez, J. (2006). Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Hum. Reprod. 21, 413–20.
Donnez, J., Dolmans, M.M., Demylle, D., Jadoul, P., Pirard, C., Squifflet, J., Martinez-Madrid, B. & van Langendonckt, A. (2004). Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364, 1405–10.
Durrant, B.S., Pratt, N.C., Russ, K.D. & Bolamba, D. (1998). Isolation and characterization of canine advanced preantral and early antral follicles. Theriogenology 49, 917–32.
Elliott, W.M. & Auersperg, N. (1993). Comparison of the neutral red and methylene blue assays to study cell growth in culture. Biotech. Histochem. 68, 2935.
Eppig, J.J. & O’Brien, M.J. (1996). Development in vitro of mouse oocytes from primordial follicles. Biol. Reprod., 54, 197207.
Fabbri, R., Pasquinelli, G., Keane, D., Mozzanega, B., Magnani, V., Tamburini, F. & Venturoli, S. (2009). Culture of cryopreserved ovarian tissue: state of the art in 2008. Fertil. Steril. 91, 1619–29.
Fair, T. (2003). Follicular oocyte growth and acquisition of developmental competence. Anim. Reprod. Sci. 78, 203–16.
Fair, T., Hulshof, S.C., Hyttel, P., Greve, T. & Boland, M. (1997). Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat. Embryol. 195, 327–36.
Figueiredo, J.R., Hulshof, S.C., Van den Hurk, R., Ectors, F.J., Fontes, R.S., Nusgens, B., Bevers, M.M. & Beckers, J.F. (1993). Development of a combined new mechanical and enzymatic method for the isolation of intact preantral follicles from fetal, calf and adult bovine ovaries. Theriogenology 40, 789–99.
Figueiredo, J.R., Hulshof, S.C., Van den Hurk, R., Nusgens, B., Bevers, M.M., Ectors, F.J. & Beckers, J.F. (1994). Preservation of oocyte and granulosa cell morphology in bovine preantral follicles cultured in vitro. Theriogenology 41, 1333–46.
Figueiredo, J.R., Rodrigues, A.P., Silva, J.R. & Santos, R.R. (2011). Cryopreservation and in vitro culture of caprine preantral follicles. Reprod. Fertil. Dev. 23, 40–7.
Fortune, J.E. (2003). The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim. Reprod. Sci. 78, 135–63.
Fotakis, G. & Timbrell, J.A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 160, 171–7.
Greenwald, G.S. & Moor, R.M. (1989). Isolation and preliminary characterization of pig primordial follicles. J. Reprod. Fertil. 87, 561–71.
Gupta, P.S., Nandi, S., Ravindranatha, B.M. & Sarma, P.V. (2001). Isolation of preantral follicles from buffalo ovaries. Vet. Rec. 148, 543–4.
Haag, K.T., Magalhaes-Padilha, D.M., Fonseca, G.R., Wischral, A., Gastal, M.O., King, S.S., Jones, K.L., Figueiredo, J.R. & Gastal, E.L. (2013). Equine preantral follicles obtained via the biopsy pick-up method: histological evaluation and validation of a mechanical isolation technique. Theriogenology 79, 735–43.
Hazeleger, N.L., Hill, D.J., Stubbing, R.B. & Walton, J.S. (1995). Relationship of morphology and follicular fluid environment of bovine oocytes to their developmental potential in vitro. Theriogenology 43, 509–22.
Hovatta, O., Wright, C., Krausz, T., Hardy, K. & Winston, R.M. (1999). Human primordial, primary and secondary ovarian follicles in long-term culture: effect of partial isolation. Hum. Reprod. 14, 2519–24.
Hulshof, S.C., Figueiredo, J.R., Beckers, J.F., Bevers, M.M. & van den Hurk, R. (1994). Isolation and characterization of preantral follicles from foetal bovine ovaries. Vet. Q. 16, 7880.
Itoh, T. & Hoshi, H. (2000). Efficient isolation and long-term viability of bovine small preantral follicles in vitro. In Vitro Cell. Dev. Biol. 36, 235–40.
Johnson, J., Canning, J., Kaneko, T., Pru, J.K. & Tilly, J.L. (2004). Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–50.
Kerr, J.B., Duckett, R., Myers, M., Britt, K.L., Mladenovska, T. & Findlay, J.K. (2006). Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproduction 132, 95109.
Lee, D.M., Yeoman, R.R., Battaglia, D.E., Stouffer, R.L., Zelinski-Wooten, M.B., Fanton, J.W. & Wolf, D.P. (2004). Live birth after ovarian tissue transplant. Nature 428, 137–8.
Lindner, G.M. & Wright, R.W. Jr. (1983). Bovine embryo morphology and evaluation. Theriogenology 20, 407–16.
Lucci, C.M., Amorim, C.A., Bao, S.N., Figueiredo, J.R., Rodrigues, A.P., Silva, J.R. & Goncalves, P.B. (1999a). Effect of the interval of serial sections of ovarian tissue in the tissue chopper on the number of isolated caprine preantral follicles. Anim. Reprod. Sci. 56, 3949.
Lucci, C.M., Amorim, C.A., Rodrigues, A.P., Figueiredo, J.R., Bao, S.N., Silva, J.R. & Goncalves, P.B. (1999b). Study of preantral follicle population in situ and after mechanical isolation from caprine ovaries at different reproductive stages. Anim. Reprod. Sci. 56, 223–36.
Lucci, C.M., Rumpf, R., Figueiredo, J.R. & Bao, S.N. (2002). Zebu (Bos indicus) ovarian preantral follicles: morphological characterization and development of an efficient isolation method. Theriogenology 57, 1467–83.
Lucci, C.M., Silva, R.V., Carvalho, C.A., Figueiredo, R. & Bao, N. (2001). Light microscopical and ultrastructural characterization of goat preantral follicles. Small Rumin. Res. 41, 61–9.
Lundy, T., Smith, P., O’Connell, A., Hudson, N.L. & McNatty, K.P. (1999). Populations of granulosa cells in small follicles of the sheep ovary. J. Reprod. Fertil. 115, 251–62.
Malhi, P.S., Adams, G.P. & Singh, J. (2005). Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics. Biol. Reprod., 73, 4553.
Mandl, A.M. & Zuckerman, S. (1952). The growth of the oocyte and follicle in the adult rat. J. Endocrinol. 8, 126–32.
Mayes, M.A. & Sirard, M.A. (2001). The influence of cumulus–oocyte complex morphology and meiotic inhibitors on the kinetics of nuclear maturation in cattle. Theriogenology 55, 911–22.
Nayudu, P.L., Fehrenbach, A., Kiesel, P., Vitt, U. A., Pancharatna, K. & Osborn, S. (2001). Progress toward understanding follicle development in vitro: appearances are not deceiving. Arch. Med. Res. 32, 587–94.
Nottola, S.A., Cecconi, S., Bianchi, S., Motta, C., Rossi, G., Continenza, M.A. & Macchiarelli, G. (2011). Ultrastructure of isolated mouse ovarian follicles cultured in vitro. Reprod. Biol. Endocrinol. 9, 3.
Oktem, O. & Urman, B. (2010). Understanding follicle growth in vivo. Hum. Reprod. 25, 2944–54.
Park, K.S., Lee, T.H., Park, Y.K., Song, H.B. & Chun, S.S. (2005). Effects of isolating methods (mechanical or enzymatical) on structure of pre-antral follicles in mouse. J. Assist. Reprod. Genet. 22, 355–9.
Pedersen, T. & Peters, H. (1968). Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil. 17, 555–7.
Petro, E.M., Covaci, A., Leroy, J.L., Dirtu, A.C., De Coen, W. & Bols, P.E. (2010). Occurrence of endocrine disrupting compounds in tissues and body fluids of Belgian dairy cows and its implications for the use of the cow as a model to study endocrine disruption. Sci. Total Environ. 408, 5423–8.
Rajakoski, E. (1960). The ovarian follicular system in sexually mature heifers with special reference to seasonal, cyclical, end left-right variations. Acta Endocrinol. Suppl. (Copenh.) 34 (Suppl 52), 168.
Rodgers, R.J. & Irving-Rodgers, H.F. (2010). Morphological classification of bovine ovarian follicles. Reproduction 139, 309–18.
Roy, S.K. & Greenwald, G.S. (1985). An enzymatic method for dissociation of intact follicles from the hamster ovary: histological and quantitative aspects. Biol. Reprod. 32, 203–15.
Roy, S.K. & Greenwald, G.S. (1996). Methods of separation and in-vitro culture of pre-antral follicles from mammalian ovaries. Hum. Reprod. Update 2, 236–45.
Silva, R.C., Bao, S.N., Jivago, J.L. & Lucci, C.M. (2011). Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development: lipid component evolution. Theriogenology 76, 1647–57.
Torrance, C., Telfer, E. & Gosden, R.G. (1989). Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture. J. Reprod. Fertil. 87, 367–74.
Turnbull, K.E., Braden, A.W. & Mattner, P.E. (1977). The pattern of follicular growth and atresia in the ovine ovary. Aust. J. Biol. Sci. 30, 229–41.
van Wezel, I.L. & Rodgers, R.J. (1996). Morphological characterization of bovine primordial follicles and their environment in vivo. Biol. Reprod. 55, 1003–11.
Xu, M., West-Farrell, E.R., Stouffer, R.L., Shea, L.D., Woodruff, T.K. & Zelinski, M.B. (2009). Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol. Reprod. 81, 587–94.
Yu, S.J., Yong, Y. H. & Cui, Y. (2010). Oocyte morphology from primordial to early tertiary follicles of yak. Reprod. Domest. Anim. 45, 779–85.


Characterization of freshly retrieved preantral follicles using a low-invasive, mechanical isolation method extended to different ruminant species

  • A. Langbeen (a1), E.P.A. Jorssen (a2), E. Fransen (a3), A.P.A. Rodriguez (a4), M. Chong García (a2) (a5), J.L.M.R. Leroy (a2) and P.E.J. Bols (a2)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed