Skip to main content Accessibility help
×
Home

Activation of amphibian oocytes by sperm extracts

  • F. Bonilla (a1), M. T. Ajmat (a1), G. Sánchez Toranzo (a1), L. Zelarayán (a1), J. Oterino (a1) and M. I. Bühler (a2) (a1)...

Summary

In the fertilization of most animals, egg activation is accompanied by an increase in cytoplasmatic Ca2+; however, the mechanism through which the fertilizing sperm induce this phenomenon is still controversial. An increase in intracellular free Ca2+ is required to trigger egg activation events, a process that includes cortical granule exocytosis, resumption and completion of meiosis and DNA replication, and culminates in the first mitotic cleavage. In this work, we investigated the effect of microinjection and incubation of different fractions of homologous sperm extract on the activation of Bufo arenarum oocytes matured in vitro. Two heat treatment-sensitive fractions obtained by chromatography were able to induce oocyte activation. The sperm fraction, which contained a 24 kDa protein, induced 90% activation when it was microinjected into the oocytes. Whilst the sperm fraction, which contained a 36 kDa protein, was able to induce about 70% activation only when it was applied on the oocyte surface.

Copyright

Corresponding author

All correspondence to: Marta I. Bühler. Departamento de Biología del Desarrollo, Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina, Fax: +54 381 4248025. e-mail: mbuhler@fbqf.unt.edu.ar

References

Hide All
Dale, B., DeFelice, L. & Ehrenstein, G. (1985). Injection of a soluble sperm extract into sea urchin eggs triggers the cortical reaction. Experientia 41, 1068–70.
Dale, B. & De Felice, L.J. (1990) Soluble sperm factors, electrical events and egg activation. In Mechanisms of fertilization (ed. Dale, B.) NATO ASI Series Vol. H 45. Berlin: Springer–Verlag.
Dong, J.B., Tang, T.S. & Sun, F.Z. (2000). Xenopus and Chiquen sperm contain a cytosolic soluble protein factor which can trigger calcium oscillations in mouse eggs. Biochem. Biophys. Res. Com. 268, 947–51.
Gómez, M.I.. Santolaya, R.C. & Cabada, M.O. (1984). Exocytosis of cortical granules from activated oocytes of the toad, Bufo arenarum. Cell. Tissue Res. 237, 191–4.
Iwamatsu, T., Yoshimoto, Y. & Hiramoto, Y. (1988). Mechanisms of Ca2+ release in medaka eggs microinjected with inositol 1,4,5-trisphosphate and Ca2+. Dev. Biol. 129, 191–7.
Iwao, Y. (2000). Mechanism of eggs activation and polyspermy block in amphibians and comparative aspects with fertilization in other vertebrates. Zool. Sci. 17, 699709.
Iwao, Y., Kobayashi, M., Miki, A., Kubota, H.Y. & Yoshimoto, Y. (1995). Activation of Xenopus egg by Cynops sperm extract is dependent upon both extra- and inter-cellular Ca activities. Zool. Sci. 12, 572–81.
Iwao, Y. & Fujimura, T. (1996). Activation of Xenopus eggs by RGD-containing peptides accompanied by intracellular Ca2+ release. Dev. Biol. 177, 558–67.
Jaffe, L.A., Giusti, A.F., Carroll, D.J. & Foltz, K.R. (2001). Ca2+ signaling during fertilization of equinoderm eggs. Cell. Dev. Biol. Vol. 12, pp. 4551.
Jones, K.T., Cruttwell, C., Parrington, J. & Swann, K. (1998). A mammalian sperm cytosolic phospholipase C activity generates inositol triphosphate and causes Ca2+ release in sea urchin egg homogenates. FEBS Lett. 437, 297300.
Jones, K.T., Matsuda, M., Parrington, J., Katan, M. & Swann, K. (2000). Different Ca2+ releasing abilities of sperm extracts compared with tissue extracts and phospholipase C isoforms in sea urchin eggs homogenates and mouse eggs. Biochem. J. 346, 743–9.
Kanner, S.B., Grosmaire, L.S., Ledbetter, J.A. & Damle, N.K. (1993). Beta2-integrin LFA-1 signaling through phospholipase C-gamma 1 activation. Proc. Natl. Acad. Sci. U. S. A. 190 (15), 7099–103.
Kimura, Y., Yanagimachi, R., Kuretake, S., Bortkiewiez, H., Perry, A.C. & Yanagimachi, H. (1998). Analysis of mouse oocyte activation suggests the involvement of sperm perinuclear material. Biol. Reprod. 58, 1407–15.
Kouchi, Z., Fukami, K., Shikano, T., Oda, S., Nakamura, Y., Takenawa, T. & Miyazaki, S. (2004). Recombinant phospholipase Cζ has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J. Biol. Chem. 279, 10408–12.
Kuretake, S., Kimura, Y., Hoshi, K. & Yanagimachi, R. (1996). Fertilization and development of mouse oocytes inject with isolated sperm heads. Biol. Reprod. 55, 789–95.
Kurokawa, M., Sato, K. & Fissore, R.A. (2004). Mammalian fertilization: from sperm factor to phospholipase Czeta. Biol. Cell. 96, 3745.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.
Lin, Y.P. & Schuetz, A.W. (1985). Spontaneous oocyte maturation in Rana pipiens: estrogen and follicle wall involvement. Gamete Res. 12, 1128l.
Llanos, R.J, Whitacre, C. & Miceli, D.C. (2000). Potential involvement of C3 complement factor in amphibian fertilization. Comp. Biochem. Physiol. 127, 2938.
Machaty, Z., Bonk, A.J., Kühholzer, B. & Prather, R.S. (2000) Porcine oocyte activation induced by a cytosolic sperm factor. Mol. Reprod. Dev. 57, 290–5.
Mizote, A., Okamoto, S. & Iwao, Y. (1999). Activation of Xenopus eggs by proteases: possible involvement of a sperm protease in fertilization. Dev. Biol. 208, 7992.
Miyazaki, S., Yuzaki, M., Nakada, K., Shirakawa, H., Nakanishi, S., Nakade, S. & Mikoshiba, K. (1992). Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5- trisphosphate receptor in fertilized hamster eggs. Science 257, 251–5.
Miyazaki, S., Shirakawa, H., Nakada, K. & Honda, Y. (1993). Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 6278.
Nuccitelli, R., Yim, D.L. & Smarta, T. (1993). The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1,4,5)P3. Dev. Biol. 158, 200–12.
Oterino, J., Sanchez Toranzo, G., Zelarayan, L., Valz-Gianinet, J.N. & Bühler, M.I. (2001). Cortical granule exocytosis in Bufo arenarum oocytes matured in vitro. Zygote 9, 251–9.
Oterino, J., Sanchez Toranzo, G., Zelarayan, L., Ajmat, M.T., Bonilla, F. & Buhler, M.I. (2006). Behaviour of the vitelline envelope in Bufo arenarum oocytes matured in vitro in blockade to polyspermy. Zygote 14 (2), 97106.
Parrington, J., Swann, K., Shevchenko, V.I., Sesay, A.K. & Lai, F.A. (1996). Calcium oscillations in mammalian eggs triggered by a soluble sperm protein. Nature 25.379 (6563), 364–8.
Rice, A., Parrington, J., Jones, K. & Swann, K. (2000). Mammalian sperm contain a Ca2+ sensitive phospholipase C activity that can generate InsP3 from PIP2 associated with intracellular organelles. Dev. Biol. 227, 125–35.
Runft, L.L., Watras, J. & Jaffe, L.A. (1999). Calcium release at fertilization of Xenopus eggs requires type I IP3 receptors, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta. Dev. Biol. 223, 399411.
Sato, K., Tokmakov, A.A., Iwasaki, T. & Fukami, Y. (2000). Tyrosine kinase-dependent activation of phospholipase Cγ is required for calcium transient in Xenopus egg fertilization. Dev. Biol. 224, 453–69.
Saunders, C.M., Larman, M.G., Parrington, J., Cox, L.J., Royse, J., Blayney, L.M., Swann, K. & Lai, F.A. (2002). PLCzeta: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129, 3533–44.
Shilling, F., Craig, M. & Nuccitelli, R. (1998). Voltage-dependent activation of frog eggs by a sperm surface disintegrin peptide. Dev. Biol. 202, 113–24.
Snow, P., Yim, D.L., Leibow, J.D., Saini, S. & Nuccitelli, R. (1996). Fertilization stimulates an increase in inositol trisphosphate and inositol lipid levels in Xenopus eggs. Dev. Biol. 180, 108–18.
Stith, B.J, Goalstone, M., Silva, S. & Jaynes, C. (1993). Inositol 1,4,5-trisphosphate mass changes from fertilization through first cleavage in Xenopus laevis. Mol. Biol. Cell 4 (4), 435–43.
Stricker, S.A. (1999) Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157–76.
Swann, K. & Lai, F.A. (1997) A novel signaling mechanism for generating Ca2+ oscillations at fertilization in mammals. BioEssays 19, 371–8.
Whitaker, M.J. & Swann, K. (1993). Lighting the fuse at fertilization. Development 117, 112.
Wilding, M. & Dale, B. (1998), Soluble extracts from ascidian spermatozoa trigger intracellular calcium release independently of the activation of the ADP ribose channel. Zygote 6, 149–55.
Wolny, Y., Fissore, R.A., Wu, H., Reis, M.M., Colombero, R.T., Ergün, B., Rosenwaks, Z. & Palermo, G.D. (1999). Human glucosamine-6-phosphate isomerase, a homologue of hamster oscillin, does not appear to be involved in Ca2+ release in mammalian oocytes. Mol. Reprod. Dev. 52, 277–87.
Wu, H., Smyth, J., Luzzi, V., Fukami, K., Takenawa, T., Black, S.L., Allbritton, N.L. & Fissore, R.A. (2001). Sperm factor induces intracellular free calcium oscillations by stimulating the phosphoinositide pathway. Biol. Reprod. 64, 1338–49.

Keywords

Activation of amphibian oocytes by sperm extracts

  • F. Bonilla (a1), M. T. Ajmat (a1), G. Sánchez Toranzo (a1), L. Zelarayán (a1), J. Oterino (a1) and M. I. Bühler (a2) (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed