Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-2l47r Total loading time: 7.134 Render date: 2021-04-11T05:20:27.318Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Urea changes oocyte competence and gene expression in resultant bovine embryo in vitro

Published online by Cambridge University Press:  30 April 2018

Rasoul Kowsar
Affiliation:
Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080–8555, Japan
Fatemeh Izadi
Affiliation:
Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
Nima Sadeghi
Affiliation:
FKA, Animal Husbandry and Agriculture Co, Isfahan, Iran
Ahmad Riasi
Affiliation:
Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
Faezeh Ghazvini Zadegan
Affiliation:
Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
Mehdi Hajian
Affiliation:
Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
Mohammad Hossein Nasr-Esfahani
Affiliation:
Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
Hossein Farrokhpour
Affiliation:
Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
Akio Miyamoto
Affiliation:
Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080–8555, Japan

Summary

Nutrition influences the microenvironment in the proximity of oocyte and affects early embryonic development. Elevated blood urea nitrogen, even in healthy dairy cows, is associated with reduced fertility and there is high correlation between blood urea levels and follicular fluid urea levels. Using a docking calculation (in silico), urea showed a favorable binding activity towards the ZP-N domain of ZP3, that of ZP2, and towards the predicted full-length sperm receptor ZP3. Supplementation of oocyte maturation medium with nutrition-related levels of urea (20 or 40 mg/dl as seen in healthy dairy cows fed on low or high dietary protein, respectively) dose-dependently increased: (i) the proportion of oocytes that remained uncleaved; and (ii) oocyte degeneration; and reduced cleavage, blastocyst and hatching rates. High levels of urea induced shrinkage in oocytes, visualised using scanning electron microscopy. Urea downregulated NANOG while dose-dependently upregulating OCT4, DNMT1, and BCL2 expression. Urea at 20 mg/dl induced BAX expression. Using mathematical modelling, the rate of oocyte degeneration was sensitive to urea levels; while cleavage, blastocyst and hatching rates exhibited negative sensitivity. The present data imply a novel role for urea in reducing oocyte competence and changing gene expression in the resultant embryos.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Arnold, S.J. & Robertson, E.J. (2009). Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91103.CrossRefGoogle ScholarPubMed
Barzegar, A., Mansouri, A. & Azamat, J. (2016). Molecular dynamics simulation of non-covalent single-walled carbon nanotube functionalization with surfactant peptides. J. Mol. Graph. Model. 64, 7584.CrossRefGoogle ScholarPubMed
Berg, D.K., Smith, C.S., Pearton, D.J., Wells, D.N., Broadhurst, R., Donnison, M. & Pfeffer, P.L. (2011). Trophectoderm lineage determination in cattle. Dev. Cell 20, 244–55.CrossRefGoogle ScholarPubMed
Biniszkiewicz, D., Gribnau, J., Ramsahoye, B., Gaudet, F., Eggan, K., Humpherys, D., Mastrangelo, M.A., Jun, Z., Walter, J. & Jaenisch, R. (2002). Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell. Biol. 22, 2124–35.CrossRefGoogle ScholarPubMed
Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., Gifford, D.K., Melton, D.A., Jaenisch, R. & Young, R.A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–56.CrossRefGoogle ScholarPubMed
Butler, W., Calaman, J. & Beam, S. (1996). Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle. J. Anim. Sci. 74, 858–65.CrossRefGoogle ScholarPubMed
Caflisch, A. & Karplus, M. (1999). Structural details of urea binding to barnase: a molecular dynamics analysis. Structure 7, 477–88.CrossRefGoogle ScholarPubMed
Callebaut, I., Mornon, J.P. & Monget, P. (2007). Isolated ZP-N domains constitute the N-terminal extensions of zona pellucida proteins. Bioinformatics 23, 1871–74.CrossRefGoogle ScholarPubMed
Cebrian-Serrano, A., Salvador, I., García-Roselló, E., Pericuesta, E., Pérez-Cerezales, S., Gutierrez-Adán, A., Coy, P. & Silvestre, M.A. (2013). Effect of the bovine oviductal fluid on in vitro fertilization, development and gene expression of in vitro produced bovine blastocysts. Reprod. Dom. Anim. 48, 331–8.CrossRefGoogle ScholarPubMed
De Wit, A., Cesar, M. & Kruip, T. (2001). Effect of urea during in vitro maturation on nuclear maturation and embryo development of bovine cumulus–oocyte-complexes. J. Dairy Sci. 84, 1800–4.CrossRefGoogle ScholarPubMed
Ferguson, J.D., Galligan, D.T., Blanchard, T. & Reeves, M. (1993). Serum urea nitrogen and conception rate: the usefulness of test information. J. Dairy Sci. 76, 3742–46.CrossRefGoogle ScholarPubMed
Fortune, J. (1994). Ovarian follicular growth and development in mammals. Biol. Reprod. 50, 225–32.CrossRefGoogle ScholarPubMed
Giraldo, A.M., DeCourcy, K., Ball, S.F., Hylan, D. & Ayares, D.L. (2013). Gene expression of Dnmt1 isoforms in porcine oocytes, embryos, and somatic cells. Cell. Reprogram. 15, 309–21.Google ScholarPubMed
Glinos, A., Bardi, G., Dermitzaki, K., Perez, S.A. & Talieri, M.J. (1983). Cytokinetic and cytotoxic effects of urea on Hela cells in suspension cultures. J. Natl. Cancer Inst. 71, 1211–19.Google ScholarPubMed
Gook, D.A., Edgar, D.H., Borg, J. & Martic, M. (2008). Detection of zona pellucida proteins during human Folliculogenesis. Hum. Reprod. 23, 394402.CrossRefGoogle ScholarPubMed
Green, M.P., Harvey, A.J., Spate, L.D., Kimura, K., Thompson, J.G. & Roberts, R.M. (2016). The effects of 2, 4-dinitrophenol and d-glucose concentration on the development, sex ratio, and interferon-tau (IFNT) production of bovine blastocysts. Mol. Reprod. Dev. 83, 5060.CrossRefGoogle ScholarPubMed
Grohmann, M., Spada, F., Schermelleh, L., Alenina, N., Bader, M., Cardoso, M.C. & Leonhardt, H. (2005). Restricted mobility of Dnmt1 in preimplantation embryos: implications for epigenetic reprogramming. BMC Dev. Biol. 5, 18.CrossRefGoogle ScholarPubMed
Hammon, D., Holyoak, G. & Dhiman, T. (2005). Association between blood plasma urea nitrogen levels and reproductive fluid urea nitrogen and ammonia concentrations in early lactation dairy cows. Anim. Reprod. Sci. 86, 195204.CrossRefGoogle ScholarPubMed
Han, L., Monné, M., Okumura, H., Schwend, T, Cherry, A.L., Flot, D., Matsuda, T. & Jovine, L. (2010). Insights into egg coat assembly and egg-sperm interaction from the X-ray structure of full-length ZP3. Cell 143, 404–15.CrossRefGoogle ScholarPubMed
Hernandez-Ledezma, J.J., Sikes, J.D., Murphy, C.N., Watson, A.J., Schultz, G.A. & Roberts, R.M. (1992). Expression of bovine trophoblast interferon in conceptuses derived by in vitro techniques. Biol. Reprod. 47, 374–80.CrossRefGoogle ScholarPubMed
Hua, L., Zhou, R., Thirumalai, D. & Berne, B.J. (2008). Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. PNAS. 105, 16928–33.CrossRefGoogle ScholarPubMed
Ibrahim, S., Salilew-Wondim, D., Rings, F., Hoelker, M., Neuhoff, C., Tholen, E., Looft, C., Schellander, K. & Tesfaye, D. (2015). Expression pattern of inflammatory response genes and their regulatory microRNAs in bovine oviductal cells in response to lipopolysaccharide: implication for early embryonic development. PLoS One 10, e0119388.CrossRefGoogle ScholarPubMed
Jovine, L., Janssen, W.G., Litscher, E.S. & Wassarman, P.M. (2006) The PLAC1-homology region of the ZP domain is sufficient for protein polymerisation. BMC Biochem. 7, 11.CrossRefGoogle ScholarPubMed
Józwik, M., Józwik, M., Teng, C. & Battaglia, F.C. (2006). Amino acid, ammonia and urea concentrations in human pre-ovulatory ovarian follicular fluid. Hum. Reprod. 21, 2776–82.CrossRefGoogle ScholarPubMed
Jusman, Y., Ng, S.C. & Abu Osman, N.A. (2014). Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. Sci. World J. 2014, https://doi.org/10.1155/2014/289817.CrossRefGoogle ScholarPubMed
Kalmar, T., Lim, C., Hayward, P., Muñoz-Descalzo, S., Nichols, J., Garcia-Ojalvo, J. & Martinez Arias, A. (2009). Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7, e1000149.CrossRefGoogle ScholarPubMed
Khan, D.R., Dubé, D., Gall, L., Peynot, N., Ruffini, S., Laffont, L., Le Bourhis, D., Degrelle, S., Jouneau, A. & Duranthon, V. (2012). Expression of pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo. PLoS ONE 7, e34110.CrossRefGoogle ScholarPubMed
Kim, S.J., Koo, O.J., Park, H.J., Moon, J.H., da Torre, B.R., Javaregowda, P.K., Kang, J.T., Park, S.J., Saadeldin, I.M., Choi, J.Y., Lee, B.C. & Jang, G. (2015). Oct4 overexpression facilitates proliferation of porcine fibroblasts and development of cloned embryos. Zygote 23, 704–11.CrossRefGoogle ScholarPubMed
Kimura, K., Spate, L.D., Green, M.P. & Roberts, R.M. (2004). Effects of oxidative stress and inhibitors of the pentose phosphate pathway on sexually dimorphic production of IFN-τ by bovine blastocysts. Mol. Reprod. Dev. 68, 8895.CrossRefGoogle ScholarPubMed
Kowsar, R., Marey, M.A., Shimizu, T. & Miyamoto, A. (2016). Urea induces T helper 2 (Th2) type environment at transcriptional level and prostaglandin E2 secretion in bovine oviduct epithelial cells in culture. J. Dairy Sci. 99, 5844–50.CrossRefGoogle Scholar
Koyama, K., Hasegawa, A., Inoue, M. & Isojima, S. (1991). Blocking of human sperm-zona interaction by monoclonal antibodies to a glycoprotein family (ZP4) of porcine zona pellucida. Biol. Reprod. 45, 727–35.CrossRefGoogle ScholarPubMed
Leibfried, L. & First, N. (1979). Characterization of bovine follicular oocytes and their ability to mature in vitro. J. Anim. Sci. 48, 7686.CrossRefGoogle ScholarPubMed
Li, E., Beard, C. & Jaenisch, R. (1993). Role for DNA methylation in genomic imprinting. Nature 366, 362–65.CrossRefGoogle ScholarPubMed
Madeja, Z.E., Sosnowski, J., Hryniewicz, K., Warzych, E., Pawlak, P., Rozwadowska, N., Plusa, B. & Lechniak, D. (2013). Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development. BMC Dev. Biol. 13, 32.CrossRefGoogle ScholarPubMed
Makita, M., Ueda, M. & Miyano, T. (2016). The fertilization ability and developmental competence of bovine oocytes grown in vitro. J. Reprod. Dev. 62, 379–84.CrossRefGoogle ScholarPubMed
Matoba, S., Bender, K., Fahey, A.G., Mamo, S., Brennan, L., Lonergan, P. & Fair, T. (2014). Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod. Fertil. Dev. 26, 337–45.CrossRefGoogle ScholarPubMed
Messerschmidt, D.M., Knowles, B.B. & Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Gene. Dev. 28, 812–28.CrossRefGoogle ScholarPubMed
Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M. & Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–42.CrossRefGoogle ScholarPubMed
Monné, M., Han, L., Schwend, T., Burendahl, S. & Jovine, L. (2008). Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats. Nature 456, 653–59.CrossRefGoogle ScholarPubMed
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. & Olson, A.J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–91.CrossRefGoogle ScholarPubMed
Moulavi, F., Hosseini, S., Hajian, M., Forouzanfar, M., Abedi, P., Ostadhosseini, S., Asgari, V. & Nasr-Esfahani, M.H. (2013). Nuclear transfer technique affects mRNA abundance, developmental competence and cell fate of the reconstituted sheep oocytes. Reproduction 145, 345–55.CrossRefGoogle ScholarPubMed
Muñoz-Descalzo, S., Rué, P., Garcia-Ojalvo, J. & Martinez Arias, A. (2012). Correlations between the levels of oct4 and nanog as a signature for naive pluripotency in mouse embryonic stem cells. Stem Cells 30, 2683–91.CrossRefGoogle ScholarPubMed
Nagano, M., Katagiri, S. & Takahashi, Y. (2006). Relationship between bovine oocyte morphology and in vitro developmental potential. Zygote 14, 5361.CrossRefGoogle ScholarPubMed
Ogony, J.W., Malahias, E., Vadigepalli, R. & Anni, H. (2013). Ethanol alters the balance of Sox2, Oct4, and Nanog expression in distinct subpopulations during differentiation of embryonic stem cells. Stem Cells Dev. 22, 21962210.CrossRefGoogle ScholarPubMed
Pimenta, J., Sardinha, J., Marques, C.C., Domingos, A., Baptista, M.C., Barbas, J.P., Martins, I.C., Mesquita, P., Pessa, P., Soares, R., Viegas, A., Cabrita, E., Horta, E.M., Fontes, C.A., Prates, A.M. & Pereira, M.L. (2013). Inhibition of ovine in vitro fertilization by anti-Prt antibody: hypothetical model for Prt/ZP interaction. Reprod. Biol. Endocrinol. 11, 25.CrossRefGoogle ScholarPubMed
Revelli, A., Piane, L.D., Casano, S., Molinari, E., Massobrio, M. & Rinaudo, P. (2009). Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 7, 40.CrossRefGoogle ScholarPubMed
Roy, A., Kucukural, A. & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–38.CrossRefGoogle ScholarPubMed
Sánchez-Alvarez, R., Gayen, S., Vadigepalli, R. & Anni, H. (2013). Ethanol diverts early neuronal differentiation trajectory of embryonic stem cells by disrupting the balance of lineage specifiers. PLoS ONE 8, e63794.CrossRefGoogle ScholarPubMed
Santos, P., Marques, A., Antunes, G., Chaveiro, A., Andrade, M., Borba, A. & da Silva, F.M. (2009). Effects of plasma urea nitrogen levels on the bovine oocyte ability to develop after in vitro fertilization. Reprod. Dom. Anim. 44, 783–87.CrossRefGoogle ScholarPubMed
Sinclair, K., Kuran, M., Gebbie, F., Webb, R. & McEvoy, T.G. (2000). Nitrogen metabolism and fertility in cattle: II. Development of oocytes recovered from heifers offered diets differing in their rate of nitrogen release in the rumen. J. Anim. Sci. 78, 2670–80.CrossRefGoogle ScholarPubMed
Son, W.Y., Lee, S.Y. & Lim, J.H. (2005). Fertilization, cleavage and blastocyst development according to the maturation timing of oocytes in in vitro maturation cycles. Hum. Reprod. 20, 3204–07.CrossRefGoogle ScholarPubMed
Theunissen, T.W., van Oosten, A.L., Castelo-Branco, G., Hall, J., Smith, A. & Silva, J.C. (2011). Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions. Curr. Biol. 21, 6571.CrossRefGoogle ScholarPubMed
Tosti, E. (2006). Calcium ion currents mediating oocyte maturation events. Reprod. Biol. Endocrinol. 4, 26.CrossRefGoogle ScholarPubMed
Wagner, C.A., Huber, S.M., Wärntges, S., Zempel, G., Kaba, N.K., Fux, R., Orth, N., Busch, G.L., Waldegger, S., Lambert, I., Nilius, B., Heinle, H. & Lang, F. (2000). Effect of urea and osmotic cell shrinkage on Ca2+ entry and contraction of vascular smooth muscle cells. Pflugers Arch. 440, 295301.Google ScholarPubMed
Wang, H., Miyazaki, J. & Smith, A.G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–76.Google Scholar
Wassarman, P.M. (2008). Zona pellucida glycoproteins. J. Biol. Chem. 283, 24285–89.CrossRefGoogle ScholarPubMed
Wassarman, P.M., Chen, J., Cohen, N., Litscher, E., Liu, C., Qi, H. & Williams, Z. (1999). Structure and function of the mammalian egg zona pellucida. J. Exp. Zool. Part B: Mol. Dev. Evol. 285, 251–8.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Zeuthen, T. & MacAulay, N. (2012). Cotransport of water by Na+–K+–2Cl cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J. Physiol. 590, 1139–54.CrossRefGoogle ScholarPubMed
Zhang, Y. (2007). Template-based modelling and free modelling by I-TASSER in CASP7. Proteins 69, 108117.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 36
Total number of PDF views: 115 *
View data table for this chart

* Views captured on Cambridge Core between 30th April 2018 - 11th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Urea changes oocyte competence and gene expression in resultant bovine embryo in vitro
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Urea changes oocyte competence and gene expression in resultant bovine embryo in vitro
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Urea changes oocyte competence and gene expression in resultant bovine embryo in vitro
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *