Hostname: page-component-5d59c44645-dknvm Total loading time: 0 Render date: 2024-02-27T23:57:54.033Z Has data issue: false hasContentIssue false

Therapeutic potential of nanotechnology in reproduction disorders and possible limitations

Published online by Cambridge University Press:  04 August 2023

Pedro Alves Aguiar Barroso
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará – UFC, Sobral-CE, Brazil
Danisvânia Ripardo Nascimento
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará – UFC, Sobral-CE, Brazil
Miguel F. De Lima Neto
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará – UFC, Sobral-CE, Brazil Research Center of Animal Experimentation (NUPEX), Federal University of Ceará – UFC, Sobral-CE, Brazil
Ernando Igo T. De Assis
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará – UFC, Sobral-CE, Brazil Research Center of Animal Experimentation (NUPEX), Federal University of Ceará – UFC, Sobral-CE, Brazil
Ciro Siqueira Figueira
Laboratory of Material Engineering and Simulation of Sobral (LEMSS), Federal University of Ceará – UFC, Sobral-CE, Brazil
José Roberto Viana Silva*
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará – UFC, Sobral-CE, Brazil
Corresponding author: José Roberto Viana Silva; Email:


One of the prominent peculiarities of nanoparticles (NPs) is their ability to cross biological barriers. Therefore, the development of NPs with different properties has great therapeutic potential in the area of reproduction because the association of drugs, hormones and other compounds with NPs represents an alternative for delivering substances directly at a specific site and for treatment of reproductive problems. Additionally, lipid-based NPs can be taken up by the tissues of patients with ovarian failure, deep endometriosis, testicular dysfunctions, etc., opening up new perspectives for the treatment of these diseases. The development of nanomaterials with specific size, shape, ligand density and charge certainly will contribute to the next generation of therapies to solve fertility problems in humans. Therefore, this review discusses the potential of NPs to treat reproductive disorders, as well as to regulate the levels of the associated hormones. The possible limitations of the clinical use of NPs are also highlighted.

Review Article
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abudayyak, M., Öztaş, E., Arici, M. and Özhan, G. (2017). Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines. Chemosphere, 169, 117123. doi: 10.1016/j.chemosphere.2016.11.018 CrossRefGoogle ScholarPubMed
Afshar, A., Aliaghaei, H., Nazarian, H. A. and Abbaszadeh, P. Naserzadeh, Fathabadi, FF, Abdi, S., Raee, P., Aghajanpour, F., Norouzian, M., Abdollahifar, MA. (2021). Curcumin-loaded iron particle improvement of spermatogenesis in azoospermic mouse induced by long-term scrotal hyperthermia. Reproductive Sciences, 28(2), 371380.CrossRefGoogle ScholarPubMed
Ahmad, N., Banala, V. T., Kushwaha, P., Karvande, A., Sharma, S., Tripathi, A. K., Verma, A., Trivedi, R. and Mishra, P. R. (2016). Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: A preventive strategy for post-menopausal osteoporosis. RSC Advances, 6(100), 9761397628. doi: 10.1039/C6RA17141A CrossRefGoogle Scholar
Almeida, J. P. M., Chen, A. L., Foster, A. and Drezek, R. (2011). In vivo biodistribution of nanoparticles. Nanomedicine, 6(5), 815835. doi: 10.2217/nnm.11.79 CrossRefGoogle ScholarPubMed
Asati, A., Santra, S., Kaittanis, C. and Perez, J. M. (2010). Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano, 4(9), 53215331. doi: 10.1021/nn100816s CrossRefGoogle ScholarPubMed
Austin, C. A., Umbreit, T. H., Brown, K. M., Barber, D. S., Dair, B. J., Francke-Carroll, S., Feswick, A., Saint-Louis, M. A., Hikawa, H., Siebein, K. N. and Goering, P. L. (2012). Distribution of silver nanoparticles in pregnant mice and developing embryos. Nanotoxicology, 6(8), 912922. doi: 10.3109/17435390.2011.626539 CrossRefGoogle ScholarPubMed
Bayda, S., Hadla, M., Palazzolo, S., Kumar, V., Caligiuri, I., Ambrosi, E., Pontoglio, E., Agostini, M., Tuccinardi, T., Benedetti, A., Riello, P., Canzonieri, V., Corona, G., Toffoli, G. and Rizzolio, F. (2017). Bottom-up synthesis of carbon nanoparticles with higher doxorubicin efficacy. Journal of Controlled Release, 248, 144152. doi: 10.1016/j.jconrel.2017.01.022 CrossRefGoogle ScholarPubMed
Bedin, A., Maranhão, R. C., Tavares, E. R., Carvalho, P. O., Baracat, E. C. and Podgaec, S. (2019). Nanotechnology for the treatment of deep endometriosis: Uptake of lipid core nanoparticles by LDL receptors in endometriotic foci. Clinics, 74, e989. doi: 10.6061/clinics/2019/e989 CrossRefGoogle ScholarPubMed
Behroozi-Lak, T., Ebrahimpour, M., Zarei, L., Pourjabali, M., Farhad, N. and Mohaddesi, H. (2018). Systemic administration of curcumin nanoparticles protects ischemia-reperfusion injury in ovaries: An animal model study. Revista da Associação Médica Brasileira, 64(1), 2231. doi: 10.1590/1806-9282.64.01.22 CrossRefGoogle ScholarPubMed
Bhardwaj, V. and Kaushik, A. (2017). Biomedical applications of nanotechnology and nanomaterials. Micromachines, 8(10), 298. doi: 10.3390/mi8100298CrossRefGoogle ScholarPubMed
Bhat, I. A., Nazir, M. I., Ahmad, I., Pathakota, G. B., Chanu, T. I., Goswami, M., Sundaray, J. K. and Sharma, R. (2018). Fabrication and characterization of chitosan conjugated eurycomanone nanoparticles: In vivo evaluation of the biodistribution and toxicity in fish. International Journal of Biological Macromolecules, 112, 10931103. doi: 10.1016/j.ijbiomac.2018.02.067 CrossRefGoogle ScholarPubMed
Bisla, A., Rautela, R., Yadav, V., Saini, G., Singh, P., Ngou, A. A., Kumar, A., Ghosh, S., Kumar, A., Bag, S., Mahajan, S. and Srivastava, N. (2021). Synthesis of iron oxide nanoparticles-antiubiquitin antibodies conjugates for depletion of dead/damaged spermatozoa from buffalo (Bubalus bubalis) semen. Biotechnology and Applied Biochemistry, 68(6), 14531468. doi: 10.1002/bab.2066.Google ScholarPubMed
Biswas, A. K., Islam, M. R., Choudhury, Z. S., Mostafa, A. and Kadir, M. F. (2014). Nanotechnology based approaches in cancer therapeutics. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(4), 043001. doi: 10.1088/2043-6262/5/4/043001 Google Scholar
Chiozzi, V. and Rossi, F. (2020). Inorganic–organic core/shell nanoparticles: Progress and applications. Nanoscale Advances, 2(11), 50905105. doi: 10.1039/d0na00411a CrossRefGoogle ScholarPubMed
Dadfar, S. M., Roemhild, K., Drude, N. I., von Stillfried, S., Knüchel, R., Kiessling, F. and Lammers, T. (2019). Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced Drug Delivery Reviews, 138, 302325. doi: 10.1016/j.addr.2019.01.005 CrossRefGoogle ScholarPubMed
Dănilă, O. O., Berghian, A. S., Dionisie, V., Gheban, D., Olteanu, D., Tabaran, F., Baldea, I., Katona, G., Moldovan, B., Clichici, S., David, L. and Filip, G. A. (2017). The effects of silver nanoparticles on behavior, apoptosis and nitro-oxidative stress in offspring Wistar rats. Nanomedicine, 12(12), 14551473. doi: 10.2217/nnm-2017-0029 CrossRefGoogle ScholarPubMed
de Brito, J. L. M., Lima, V. N., Ansa, D. O., Moya, S. E., Morais, P. C., Azevedo, R. B. and Lucci, C. M. (2020). Acute reproductive toxicology after intratesticular injection of silver nanoparticles (AgNPs) in Wistar rats. Nanotoxicology, 14(7), 893907. doi: 10.1080/17435390.2020.1774812 CrossRefGoogle ScholarPubMed
Domínguez, E., Moreno-Irusta, A., Castex, H. R., Bragulat, A. F., Ugaz, C., Clemente, H., Giojalas, L. and Losinno, L. (2018). Sperm sexing mediated by magnetic nanoparticles in donkeys, a preliminary in vitro study. Journal of Equine Veterinary Science, 65, 123127. doi: 10.1016/j.jevs.2018.04.005 CrossRefGoogle Scholar
Doroudian, M., MacLoughlin, R., Poynton, F., Prina-Mello, A. and Donnelly, S. C. (2019). Nanotechnology based therapeutics for lung disease. Thorax, 74(10), 965976. doi: 10.1136/thoraxjnl-2019-213037 CrossRefGoogle ScholarPubMed
Doroudian, M., O’ Neill, A., Mac Loughlin, R., Prina-Mello, A., Volkov, Y. and Donnelly, S. C. (2021). Nanotechnology in pulmonary medicine. Current Opinion in Pharmacology, 56, 8592. doi: 10.1016/j.coph.2020.11.002 CrossRefGoogle ScholarPubMed
Dumková, J., Smutná, T., Vrlíková, L., Le Coustumer, P., Večeřa, Z., Dočekal, B., Mikuška, P., Čapka, L., Fictum, P., Hampl, A. and Buchtová, M. (2017). Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Particle and Fibre Toxicology, 14(1), 55. doi: 10.1186/s12989-017-0236-y CrossRefGoogle ScholarPubMed
El-Behery, E. I., El-Naseery, N. I., El-Ghazali, H. M., Elewa, Y. H. A., Mahdy, E. A. A., El-Hady, E. and Konsowa, M. M. H. (2019). The efficacy of chronic zinc oxide nanoparticles using on testicular damage in the streptozotocin-induced diabetic rat model. Acta Histochemica, 121(1), 8493. doi: 10.1016/j.acthis.2018.10.010 CrossRefGoogle ScholarPubMed
El-Desoky, N. I., Hashem, N. M., Gonzalez-Bulnes, A., Elkomy, A. G. and Abo-Elezz, Z. R. (2021). Effects of a nanoencapsulated Moringa leaf ethanolic extract on the physiology, metabolism and reproductive performance of rabbit does during summer. Antioxidants, 10(8), 1326. doi: 10.3390/antiox10081326 CrossRefGoogle ScholarPubMed
Fatemi Abhari, S. M., Khanbabaei, R., Hayati Roodbari, N., Parivar, K. and Yaghmaei, P. (2020). Curcumin-loaded super-paramagnetic iron oxide nanoparticle affects on apoptotic factors expression and histological changes in a prepubertal mouse model of polycystic ovary syndrome-induced by dehydroepiandrosterone – A molecular and stereological study. Life Sciences, 249, 117515. doi: 10.1016/j.lfs.2020.117515 CrossRefGoogle Scholar
Fathi, N., Hoseinipanah, S. M., Alizadeh, Z., Assari, M. J., Moghimbeigi, A., Mortazavi, M., Hosseini, M. H. and Bahmanzadeh, M. (2019). The effect of silver nanoparticles on the reproductive system of adult male rats: A morphological, histological and DNA integrity study. Advances in Clinical and Experimental Medicine, 28(3), 299305. doi: 10.17219/acem/81607 CrossRefGoogle ScholarPubMed
Feugang, J. M., Rhoads, C. E., Mustapha, P. A., Tardif, S., Parrish, J. J., Willard, S. T. and Ryan, P. L. (2019). Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology, 137, 7581. doi: 10.1016/j.theriogenology.2019.05.040 CrossRefGoogle ScholarPubMed
Gao, G., Ze, Y., Li, B., Zhao, X., Zhang, T., Sheng, L., Hu, R., Gui, S., Sang, X., Sun, Q., Cheng, J., Cheng, Z., Wang, L., Tang, M. and Hong, F. (2012). Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. Journal of Hazardous Materials, 243, 1927. doi: 10.1016/j.jhazmat.2012.08.049 CrossRefGoogle ScholarPubMed
Garbuzenko, O. B., Kbah, N., Kuzmov, A., Pogrebnyak, N., Pozharov, V. and Minko, T. (2019). Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. Journal of Controlled Release, 296, 225231. doi: 10.1016/j.jconrel.2019.01.025 CrossRefGoogle ScholarPubMed
Gonzaga, L. W., Botelho, M. A., Queiroz, D. B., Fechine, P., Freire, R., Azevedo, E., Morais, A., Ruela, R., Lyra, A., Gomes, S., Quintans Júnior, L. J., Freire, R. (2012). Nanotechnology in hormone replacement therapy: Safe and efficacy of transdermal estriol and estradiol nanoparticles after 5 years follow-up study. Latim America Journal of Pharmacy, 31(3), 442450.Google Scholar
Graziani, S. R., Vital, C. G., Morikawa, A. T., Van Eyll, B. M., Fernandes Junior, H. J., Kalil Filho, R. and Maranhão, R. C. (2017). Phase II study of paclitaxel associated with lipid core nanoparticles (LDE) as third-line treatment of patients with epithelial ovarian carcinoma. Medical Oncology, 34(9), 151. doi: 10.1007/s12032-017-1009-z CrossRefGoogle ScholarPubMed
Han, J. W., Jeong, J. K., Gurunathan, S., Choi, Y. J., Das, J., Kwon, D. N., Cho, S. G., Park, C., Seo, H. G., Park, J. K. and Kim, J. H. (2016). Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse. Nanotoxicology, 10(3), 361373. doi: 10.3109/17435390.2015.1073396 CrossRefGoogle Scholar
Hashem, N. M. and Gonzalez-Bulnes, A. (2021). Nanotechnology and reproductive management of farm animals: Challenges and advances. Animals: An Open Access Journal from MDPI, 11(7). doi: 10.3390/ani11071932 CrossRefGoogle ScholarPubMed
He, L., Zhang, Y., Ma, G., Tan, P., Li, Z., Zang, S., Wu, X., Jing, J., Fang, S., Zhou, L., Wang, Y., Huang, Y., Hogan, P. G., Han, G. and Zhou, Y. (2015). Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. eLife, 4, e10024. doi: 10.7554/eLife.10024 CrossRefGoogle ScholarPubMed
Homberger, M. and Simon, U. (2010). On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 368(1915), 14051453. doi: 10.1098/rsta.2009.0275 Google ScholarPubMed
Hue, J. J., Lee, H. J., Jon, S., Nam, S. Y., Yun, Y. W., Kim, J. S. and Lee, B. J. (2013). Distribution and accumulation of Cy5.5-labeled thermally cross-linked superparamagnetic iron oxide nanoparticles in the tissues of ICR mice. Journal of Veterinary Science, 14(4), 473479. doi: 10.4142/jvs.2013.14.4.473 CrossRefGoogle ScholarPubMed
Isaac, A. V., Kumari, S., Nair, R., Urs, D. R., Salian, S. R., Kalthur, G., Adiga, S. K., Manikkath, J., Mutalik, S., Sachdev, D. and Pasricha, R. (2017). Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze–thaw-induced damage to spermatozoa. Biochemical and Biophysical Research Communications, 494(3–4), 656662. doi: 10.1016/j.bbrc.2017.10.112 CrossRefGoogle ScholarPubMed
Jiang, J., Oberdörster, G., Elder, A., Gelein, R., Mercer, P. and Biswas, P. (2008). Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2(1), 3342. doi: 10.1080/17435390701882478 CrossRefGoogle ScholarPubMed
Kamaly, N., Yameen, B., Wu, J. and Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 116(4), 26022663. doi: 10.1021/acs.chemrev.5b00346 CrossRefGoogle ScholarPubMed
Kaushik, A. K. and Dixit, C. K. (eds) (2016). Nanobiotechnology for Sensing Applications: From Lab to Field. Apple Academic Press: Oakville, ON, Canada; CRC Press Taylor and Francis Group: Boca Raton, FL, USA.CrossRefGoogle Scholar
Kaushik, A., Tiwari, S., Jayant, R. D., Vashist, A., Nikkhah-Moshaie, R., El-Hage, N. and Nair, M. (2017). Electrochemical biosensors for early stage Zika diagnostics. Trends in Biotechnology, 35(4), 308317. doi: 10.1016/j.tibtech.2016.10.001 CrossRefGoogle ScholarPubMed
Kim, W. J., Kim, B. S., Kim, H. J., Cho, Y. D., Shin, H. L., Yoon, H. I., Lee, Y. S., Baek, J. H., Woo, K. M. and Ryoo, H. M. (2020). Intratesticular peptidyl prolyl isomerase 1 protein delivery using cationic lipid-coated fibroin nanoparticle complexes rescues male infertility in mice. ACS Nano, 14(10), 1321713231. doi: 10.1021/acsnano.0c04936 CrossRefGoogle ScholarPubMed
Kuang, H., Zhang, W., Yang, L., Aguilar, Z. P. and Xu, H. (2021). Reproductive organ dysfunction and gene expression after orally administration of ZnO nanoparticles in murine. Environmental Toxicology, 36(4), 550561. doi: 10.1002/tox.23060 CrossRefGoogle ScholarPubMed
Larson, J. K., Carvan, M. J. III, Teeguarden, J. G., Watanabe, G., Taya, K., Krystofiak, E. and Hutz, R. J. (2014). Low-Dose gold nanoparticles exert subtle endocrine-modulating effects on the ovarian steroidogenic pathway ex vivo independent of oxidative stress. Nanotoxicology, 8(8), 856866. doi: 10.3109/17435390.2013.837208 CrossRefGoogle ScholarPubMed
Lebedová, J., Hedberg, Y. S., Odnevall Wallinder, I. and Karlsson, H. L. (2018). Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis, 33(1), 7785. doi: 10.1093/mutage/gex027 CrossRefGoogle ScholarPubMed
Leso, V., Fontana, L., Marinaccio, A., Leopold, K., Fanali, C., Lucchetti, D., Sgambato, A. and Iavicoli, I. (2018). Palladium nanoparticle effects on endocrine reproductive system of female rats. Human and Experimental Toxicology, 37(10), 10691079. doi: 10.1177/0960327118756722 CrossRefGoogle ScholarPubMed
Letourneau, J. M., Ebbel, E. E., Katz, P. P., Oktay, K. H., McCulloch, C. E., Ai, W. Z., Chien, A. J., Melisko, M. E., Cedars, M. I. and Rosen, M. P. (2012). Acute ovarian failure underestimates age-specific reproductive impairment for young women undergoing chemotherapy for cancer. Cancer 118(7), 19331939. doi: 10.1002/cncr.26403 CrossRefGoogle ScholarPubMed
Li, Y., Lu, H., Liang, S. and Xu, S. (2019). Dual stable nanomedicines prepared by cisplatin-crosslinked camptothecin prodrug micelles for effective drug delivery. ACS Applied Materials and Interfaces, 11(23), 2064920659. doi: 10.1021/acsami.9b03960 CrossRefGoogle ScholarPubMed
Liu, H., Hou, P., Zhang, W. and Wu, J. (2010). Synthesis of monosized core–shell Fe3O4/Au multifunctional nanoparticles by PVP-assisted nanoemulsion process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 356(1–3), 2127. doi: 10.1016/j.colsurfa.2009.12.023 CrossRefGoogle Scholar
Luyts, K., Van Den Broucke, S., Hemmeryckx, B., Poels, K., Scheers, H., Casas, L., Vanoirbeek, J., Nemery, B. and Hoet, P. H. M. (2018). Nanoparticles in the lungs of old mice: Pulmonary inflammation and oxidative stress without procoagulant effects. Science of the Total Environment, 644, 907915. doi: 10.1016/j.scitotenv.2018.06.301 CrossRefGoogle ScholarPubMed
Ma, X., Yang, X., Wang, Y., Liu, J., Jin, S., Li, S. and Liang, X.-J. (2018). Gold nanoparticles cause size-dependent inhibition of embryonic development during murine pregnancy. Nano Research, 11(6), 34193433. doi: 10.1007/s12274-018-1969-0 CrossRefGoogle Scholar
Majidi, F. Z., Rezaei, N., Zare, Z., Dashti, A., Shafaroudi, M. M. and Abediankenari, S. (2021). The protective effects of L-carnitine and zinc oxide nanoparticles against diabetic injury on sex steroid hormones levels, oxidative stress, and ovarian histopathological changes in rat. Reproductive Sciences, 28(3), 888896. doi: 10.1007/s43032-020-00317-0 CrossRefGoogle ScholarPubMed
Melnik, E. A., Buzulukov, Y. P., Demin, V. F., Demin, V. A., Gmoshinski, I. V., Tyshko, N. V. and Tutelyan, V. A. (2013). Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rats. Acta Naturae, 5(3), 107115. doi: 10.32607/20758251-2013-5-3-107-115 CrossRefGoogle ScholarPubMed
Mittal, G., Sahana, D. K., Bhardwaj, V. and Ravi Kumar, M. N. (2007). Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo . Journal of Controlled Release, 119(1), 7785. doi: 10.1016/j.jconrel.2007.01.016 CrossRefGoogle ScholarPubMed
Mohammad, I. (2019). Gold nanoparticle: An efficient carrier for MCP I of Carica papaya seeds extract as an innovative male contraceptive in albino rats. Journal of Drug Delivery Science and Technology, 52, 942956. doi: 10.1016/j.jddst.2019.06.010 CrossRefGoogle Scholar
Mohammad Hosseini, S., Hossein Moshrefi, A., Amani, R., Vahid Razavimehr, S., Hasan Aghajanikhah, M., Sokouti, Z. and Babaei Holari, B. (2019). Subchronic effects of different doses of zinc oxide nanoparticle on reproductive organs of female rats: An experimental study. International Journal of Reproductive Biomedicine, 17(2), 107118. doi: 10.18502/ijrm.v17i2.3988 Google ScholarPubMed
Moradi, A., Ziamajidi, N., Ghafourikhosroshahi, A. and Abbasalipourkabir, R. (2019). Effects of vitamin A and vitamin E on attenuation of titanium dioxide nanoparticles-induced toxicity in the liver of male Wistar rats. Molecular Biology Reports, 46(3), 29192932. doi: 10.1007/s11033-019-04752-4 CrossRefGoogle ScholarPubMed
Morgan, A. M., Ibrahim, M. A. and Noshy, P. A. (2017). Reproductive toxicity provoked by titanium dioxide nanoparticles and the ameliorative role of Tiron in adult male rats. Biochemical and Biophysical Research Communications, 486(2), 595600. doi: 10.1016/j.bbrc.2017.03.098 CrossRefGoogle ScholarPubMed
Moses, A. S., Demessie, A. A., Taratula, O., Korzun, T., Slayden, O. D. and Taratula, O. (2021). Nanomedicines for endometriosis: Lessons learned from cancer research. Small, 17(7), e2004975. doi: 10.1002/smll.202004975 CrossRefGoogle ScholarPubMed
Nirmal, N. K., Awasthi, K. K. and John, P. J. (2017). Effects of nano-graphene oxide on testis, epididymis and fertility of Wistar rats. Basic and Clinical Pharmacology and Toxicology, 121(3), 202210. doi: 10.1111/bcpt.12782 CrossRefGoogle ScholarPubMed
Olugbodi, J. O., David, O., Oketa, E. N., Lawal, B., Okoli, B. J. and Mtunzi, F. (2020). Silver nanoparticles stimulates spermatogenesis impairments and hematological alterations in testis and epididymis of male rats. Molecules, 25(5), 1063. doi: 10.3390/molecules25051063 CrossRefGoogle ScholarPubMed
Ong, C., Lee, Q. Y., Cai, Y., Liu, X., Ding, J., Yung, L. Y. L., Bay, B. H. and Baeg, G. H. (2016). Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Scientific Reports, 6(1), 20632. doi: 10.1038/srep20632 CrossRefGoogle ScholarPubMed
Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S. and Shin, H. S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. doi: 10.1186/s12951-018-0392-8 CrossRefGoogle ScholarPubMed
Pavitra, E., Dariya, B., Srivani, G., Kang, S. M., Alam, A., Sudhir, P. R., Kamal, M. A., Raju, G. S. R., Han, Y. K., Lakkakula, B. V. K. S., Nagaraju, G. P. and Huh, Y. S. (2021). Engineered nanoparticles for imaging and drug delivery in colorectal cancer. In Seminars in Cancer Biology, 69, 293306. doi: 10.1016/j.semcancer.2019.06.017 CrossRefGoogle ScholarPubMed
Pietroiusti, A., Magrini, A. and Campagnolo, L. (2014). Mechanisms of nanomaterial toxicity. In Health and Environmental Safety of Nanomaterials (pp. 2843). Woodhead Publishing.CrossRefGoogle Scholar
Pourali, P., Nouri, M., Ameri, F., Heidari, T., Kheirkhahan, N., Arabzadeh, S. and Yahyaei, B. (2020). Histopathological study of the maternal exposure to the biologically produced silver nanoparticles on different organs of the offspring. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393(5), 867878. doi: 10.1007/s00210-019-01796-y CrossRefGoogle Scholar
Pourali, P. and Yahyaei, B. (2016). Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements, 34, 2231. doi: 10.1016/j.jtemb.2015.11.004 CrossRefGoogle ScholarPubMed
Prakapenka, A. V., Quihuis, A. M., Carson, C. G., Patel, S., Bimonte-Nelson, H. A. and Sirianni, R. W. (2020). Poly(lactic-co-glycolic acid) nanoparticle encapsulated 17β-estradiol improves spatial memory and increases uterine stimulation in middle-aged ovariectomized rats. Frontiers in Behavioral Neuroscience, 14, 597690. doi: 10.3389/fnbeh.2020.597690 CrossRefGoogle ScholarPubMed
Rattanapinyopituk, K., Shimada, A., Morita, T., Sakurai, M., Asano, A., Hasegawa, T., Inoue, K. and Takano, H. (2014). Demonstration of the clathrin- and caveolin-mediated endocytosis at the maternal–fetal barrier in mouse placenta after intravenous administration of gold nanoparticles. Journal of Veterinary Medical Science, 76(3), 377387. doi: 10.1292/jvms.13-0512 CrossRefGoogle ScholarPubMed
Refuerzo, J. S., Godin, B., Bishop, K., Srinivasan, S., Shah, S. K., Amra, S., Ramin, S. M. and Ferrari, M. (2011). Size of the nanovectors determines the transplacental passage in pregnancy: Study in rats. American Journal of Obstetrics and Gynecology, 204(6), 546.e5546.e9-e5–9. doi: 10.1016/j.ajog.2011.02.033 CrossRefGoogle ScholarPubMed
Rençber, S., Aydın Köse, F. and Karavana, S. Y. (2020). Dexamethasone loaded PLGA nanoparticles for potential local treatment of oral precancerous lesions. Pharmaceutical Development and Technology, 25(2), 149158. doi: 10.1080/10837450.2019.1673407 CrossRefGoogle ScholarPubMed
Rizvi, S. A. A. and Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26(1), 6470. doi: 10.1016/j.jsps.2017.10.012 CrossRefGoogle ScholarPubMed
Sak, M. E., Soydinc, H. E., Sak, S., Evsen, M. S., Alabalik, U., Akdemir, F. and Gul, T. (2013). The protective effect of curcumin on ischemia-reperfusion injury in rat ovary. International Journal of Surgery, 11(9), 967970. doi: 10.1016/j.ijsu.2013.06.007 CrossRefGoogle ScholarPubMed
Sanna, V., Pala, N. and Sechi, M. (2014). Targeted therapy using nanotechnology: Focus on cancer. International Journal of Nanomedicine, 9, 467483. doi: 10.2147/IJN.S36654 Google ScholarPubMed
Savla, R., Garbuzenko, O. B., Chen, S., Rodriguez-Rodriguez, L. and Minko, T. (2014). Tumor-targeted responsive nanoparticle-based systems for magnetic resonance imaging and therapy. Pharmaceutical Research, 31(12), 34873502. doi: 10.1007/s11095-014-1436-x CrossRefGoogle ScholarPubMed
Shafei, A., El-Bakly, W., Sobhy, A., Wagdy, O., Reda, A., Aboelenin, O., Marzouk, A., El Habak, K., Mostafa, R., Ali, M. A. and Ellithy, M. (2017). A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomedicine and Pharmacotherapy, 95, 12091218. doi: 10.1016/j.biopha.2017.09.059 CrossRefGoogle ScholarPubMed
Shao, S., Zhou, Q., Si, J., Tang, J., Liu, X., Wang, M., Gao, J., Wang, K., Xu, R. and Shen, Y. (2017). A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nature Biomedical Engineering, 1(9), 745757. doi: 10.1038/s41551-017-0130-9 CrossRefGoogle ScholarPubMed
Silva, J. R. V., Barroso, P. A. A., Nascimento, D. R., Figueira, C. S., Azevedo, V. A. N., Silva, B. R. and Santos, R. P. D. (2021). Benefits and challenges of nanomaterials in assisted reproductive technologies. Molecular Reproduction and Development, 88(11), 707717. doi: 10.1002/mrd.23536 CrossRefGoogle ScholarPubMed
Srinivasan, S., Bhardwaj, V., Nagasetti, A., Fernandez-Fernandez, A. and McGoron, A. J. (2016). Multifunctional surface-enhanced raman spectroscopy-detectable silver nanoparticles combined photodynamic therapy and pH-triggered chemotherapy. Journal of Biomedical Nanotechnology, 12(12), 22022219. doi: 10.1166/jbn.2016.2312 CrossRefGoogle ScholarPubMed
Sun, L., Chen, Y., Zhou, Y., Guo, D., Fan, Y., Guo, F., Zheng, Y. and Chen, W. (2017). Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo . Asian Journal of Pharmaceutical Sciences, 12(5), 418423. doi: 10.1016/j.ajps.2017.04.002 CrossRefGoogle ScholarPubMed
Tassinari, R., Cubadda, F., Moracci, G., Aureli, F., D’Amato, M., Valeri, M., De Berardis, B., Raggi, A., Mantovani, A., Passeri, D., Rossi, M. and Maranghi, F. (2014). Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: Focus on reproductive and endocrine systems and spleen. Nanotoxicology, 8(6), 654662. doi: 10.3109/17435390.2013.822114 CrossRefGoogle ScholarPubMed
Teleanu, D. M., Chircov, C., Grumezescu, A. M., Volceanov, A. and Teleanu, R. I. (2018). Impact of nanoparticles on brain health: An up to date overview. Journal of Clinical Medicine, 7(12), 490. doi: 10.3390/jcm7120490 CrossRefGoogle Scholar
Vannuccini, S., Clifton, V. L., Fraser, I. S., Taylor, H. S., Critchley, H., Giudice, L. C. and Petraglia, F. (2016). Infertility and reproductive disorders: Impact of hormonal and inflammatory mechanisms on pregnancy outcome. Human Reproduction Update, 22(1), 104115. doi: 10.1093/humupd/dmv044 CrossRefGoogle ScholarPubMed
Wang, J. Y., Chen, J., Yang, J., Wang, H., Shen, X., Sun, Y. M., Guo, M. and Zhang, X. D. (2016). Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. International Journal of Nanomedicine, 11, 34753485. doi: 10.2147/IJN.S106073 Google ScholarPubMed
Wang, E., Huang, Y., Du, Q. and Sun, Y. (2017a). Silver nanoparticle induced toxicity to human sperm by increasing ROS (reactive oxygen species) production and DNA damage. Environmental Toxicology and Pharmacology, 52, 193199. doi: 10.1016/j.etap.2017.04.010 CrossRefGoogle ScholarPubMed
Wang, X., Luo, M., Wu, H., Zhang, Z., Liu, J., Xu, Z., Johnson, W. and Sun, Y. (2017b). A three-dimensional magnetic tweezer system for intraembryonic navigation and measurement. IEEE Transactions on Robotics, 34(1), 240247. doi: 10.1109/TRO.2017.2765673 CrossRefGoogle Scholar
Wang, R., Song, B., Wu, J., Zhang, Y., Chen, A. and Shao, L. (2018). Potential adverse effects of nanoparticles on the reproductive system. International Journal of Nanomedicine, 13, 84878506. doi: 10.2147/IJN.S170723 CrossRefGoogle ScholarPubMed
Wang, X., Ho, C., Tsatskis, Y., Law, J., Zhang, Z., Zhu, M., Dai, C., Wang, F., Tan, M., Hopyan, S., McNeill, H. and Sun, Y. (2019). Intracellular manipulation and measurement with multipole magnetic tweezers. Science Robotics, 4(28), eaav6180. doi: 10.1126/scirobotics.aav6180 CrossRefGoogle ScholarPubMed
Wang, Y., Wang, J., Zhu, D., Wang, Y., Qing, G., Zhang, Y., Liu, X. and Liang, X. J. (2021). Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharmaceutica Sinica. B, 11(4), 886902. doi: 10.1016/j.apsb.2021.03.007 CrossRefGoogle ScholarPubMed
Wu, R., Zhang, Z., Wang, B., Chen, G., Zhang, Y., Deng, H., Tang, Z., Mao, J. and Wang, L. (2020). Combination chemotherapy of lung cancer – co-delivery of docetaxel prodrug and cisplatin using aptamer-decorated lipid-polymer hybrid nanoparticles. Drug Design, Development and Therapy, 14, 22492261. doi: 10.2147/DDDT.S246574 CrossRefGoogle ScholarPubMed
Yu, W., Bajorek, J., Jayade, S., Miele, A., Mirza, J., Rogado, S., Sundararajan, A., Faig, J., Ferrage, L. and Uhrich, K. E. (2017). Salicylic acid (SA)-eluting bone regeneration scaffolds with interconnected porosity and local and sustained SA release. Journal of Biomedical Materials Research. Part A, 105(1), 311318. doi: 10.1002/jbm.a.35904 CrossRefGoogle ScholarPubMed
Yuan, M., Ding, S., Meng, T., Lu, B., Shao, S., Zhang, X., Yuan, H. and Hu, F. (2017). Effect of A-317491 delivered by glycolipid-like polymer micelles on endometriosis pain. International Journal of Nanomedicine, 12, 81718183. doi: 10.2147/IJN.S146569 CrossRefGoogle ScholarPubMed
Zanella, R. (2012). Metodologías para la síntesis de nanopartículas: Controlando forma y tamaño. Mundo nano. Revista Interdisciplinaria en Nanociencias y nanotecnología, 5(1), 6981.Google Scholar
Zhai, Q. Y., Ge, W., Wang, J. J., Sun, X. F., Ma, J. M., Liu, J. C., Zhao, Y., Feng, Y. Z., Dyce, P. W., De Felici, M. and Shen, W. (2018). Exposure to zinc oxide nanoparticles during pregnancy induces oocyte DNA damage and affects ovarian reserve of mouse offspring. Aging, 10(8), 21702189. doi: 10.18632/aging.101539 CrossRefGoogle ScholarPubMed
Zhang, H., Li, J., Sun, W., Hu, Y., Zhang, G., Shen, M. and Shi, X. (2014). Hyaluronic acid-modified magnetic iron oxide nanoparticles for MR imaging of surgically induced endometriosis model in rats. PLOS ONE, 9(4), e94718. doi: 10.1371/journal.pone.0094718 CrossRefGoogle ScholarPubMed
Zhang, Y., Zhao, J., Sun, J., Huang, L. and Li, Q. (2018). Targeting lung cancer initiating cells by all-trans retinoic acid-loaded lipid-PLGA nanoparticles with CD133 aptamers. Experimental and Therapeutic Medicine, 16(6), 46394649. doi: 10.3892/etm.2018.6762Google ScholarPubMed