Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T22:26:57.409Z Has data issue: false hasContentIssue false

Isorhamnetin improves in vitro maturation of oxidative stress-exposed porcine oocytes and subsequent embryo development

Published online by Cambridge University Press:  23 January 2023

Seung-Hwan Oh
Affiliation:
Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea
Seung-Eun Lee
Affiliation:
Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea
Jae-Wook Yoon
Affiliation:
Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea
Chan-Oh Park
Affiliation:
Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea
Hyo-Jin Park
Affiliation:
Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea
So-Hee Kim
Affiliation:
Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea
Do-Geon Lee
Affiliation:
Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea
Da-Bin Pyeon
Affiliation:
Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea
Eun-Young Kim
Affiliation:
Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Mirae Cell Bio, 1502 ISBIZ-Tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, Korea
Se-Pill Park*
Affiliation:
Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea Mirae Cell Bio, 1502 ISBIZ-Tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, Korea
*
Author for correspondence: Se-Pill Park, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Korea. Tel: +82 64 754 4650. E-mail: sppark@jejunu.ac.kr

Summary

This study investigated the effect of the flavonoid-based compound isorhamnetin (ISO) on maturation and developmental competence in oxidative stress-exposed porcine oocytes in vitro. Treatment with 2 μM ISO (2 ISO) increases the developmental rate of oxidative stress-exposed porcine oocytes during in vitro maturation (IVM). The glutathione level and mRNA expression of antioxidant-related genes (NFE2L2 and SOD2) were increased in the 2 ISO-treated group, whereas the reactive oxygen species level was decreased. Treatment with 2 ISO increased mRNA expression of a cumulus cell expansion-related gene (SHAS2) and improved chromosomal alignment. mRNA expression of maternal genes (CCNB1, MOS, BMP15 and GDF9) and mitogen activated protein kinase (MAPK) activity were increased in the 2 ISO-treated group. The total cell number per blastocyst and percentage of apoptotic cells were increased and decreased in the 2 ISO-treated group, respectively. Treatment with 2 ISO increased mRNA expression of development-related genes (SOX2, NANOG, and POU5F1) and anti-apoptotic genes (BCL2L1 and BIRC5) and decreased that of pro-apoptotic genes (CASP3 and FAS). These results demonstrate that 2 ISO improves the quality of porcine oocytes by protecting them against oxidative stress during IVM and enhances subsequent embryo development in vitro. Therefore, we propose that ISO is a useful supplement for IVM of porcine oocytes.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Abeydeera, L. R., Wang, W. H., Cantley, T. C., Prather, R. S. and Day, B. N. (1998). Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology, 50(5), 747756. doi: 10.1016/s0093-691x(98)00180-0 CrossRefGoogle ScholarPubMed
Ambrosini, G., Adida, C. and Altieri, D. C. (1997). A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Medicine, 3(8), 917921. doi: 10.1038/nm0897-917 CrossRefGoogle ScholarPubMed
Ambruosi, B., Uranio, M. F., Sardanelli, A. M., Pocar, P., Martino, N. A., Paternoster, M. S., Amati, F. and Dell’Aquila, M. E. (2011). In vitro acute exposure to DEHP affects oocyte meiotic maturation, energy and oxidative stress parameters in a large animal model. PLOS ONE, 6(11), e27452. doi: 10.1371/journal.pone.0027452 CrossRefGoogle Scholar
Armand, L., Andriamihaja, M., Gellenoncourt, S., Bitane, V., Lan, A. and Blachier, F. (2019). In vitro impact of amino acid-derived bacterial metabolites on colonocyte mitochondrial activity, oxidative stress response and DNA integrity. Biochimica et Biophysica Acta. General Subjects, 1863(8), 12921301. doi: 10.1016/j.bbagen.2019.04.018 CrossRefGoogle ScholarPubMed
Bao, M. and Lou, Y. (2006). Isorhamnetin prevent endothelial cell injuries from oxidized LDL via activation of p38MAPK. European Journal of Pharmacology, 547(1–3), 2230. doi: 10.1016/j.ejphar.2006.07.021 CrossRefGoogle ScholarPubMed
Bettegowda, A., Patel, O. V., Lee, K. B., Park, K. E., Salem, M., Yao, J., Ireland, J. J. and Smith, G. W. (2008). Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: Functional and diagnostic implications. Biology of Reproduction, 79(2), 301309. doi: 10.1095/biolreprod.107.067223 CrossRefGoogle ScholarPubMed
Boesch-Saadatmandi, C., Loboda, A., Wagner, A. E., Stachurska, A., Jozkowicz, A., Dulak, J., Döring, F., Wolffram, S. and Rimbach, G. (2011). Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: Role of miR-155. Journal of Nutritional Biochemistry, 22(3), 293299. doi: 10.1016/j.jnutbio.2010.02.008 CrossRefGoogle ScholarPubMed
Chen, Q., Song, S., Wang, Z., Shen, Y., Xie, L., Li, J., Jiang, L., Zhao, H., Feng, X., Zhou, Y., Zhou, M., Zeng, X., Ji, N. and Chen, Q. (2021). Isorhamnetin induces the paraptotic cell death through ROS and the ERK/MAPK pathway in OSCC cells. Oral Diseases, 27(2), 240250. doi: 10.1111/odi.13548 CrossRefGoogle ScholarPubMed
Choi, J., Park, S. M., Lee, E., Kim, J. H., Jeong, Y. I., Lee, J. Y., Park, S. W., Kim, H. S., Hossein, M. S., Jeong, Y. W., Kim, S., Hyun, S. H. and Hwang, W. S. (2008). Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Molecular Reproduction and Development, 75(7), 11271135. doi: 10.1002/mrd.20861 CrossRefGoogle ScholarPubMed
Choi, W. J., Banerjee, J., Falcone, T., Bena, J., Agarwal, A. and Sharma, R. K. (2007). Oxidative stress and tumor necrosis factor-alpha-induced alterations in metaphase II mouse oocyte spindle structure. Fertility and Sterility, 88(4), Suppl., 12201231. doi: 10.1016/j.fertnstert.2007.02.067 CrossRefGoogle ScholarPubMed
Choi, Y. H. (2016). The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation. General Physiology and Biophysics, 35(2), 145154. doi: 10.4149/gpb_2015034 CrossRefGoogle ScholarPubMed
Dong, J., Sulik, K. K. and Chen, S. Y. (2008). Nrf2-mediated transcriptional induction of antioxidant response in mouse embryos exposed to ethanol in vivo: Implications for the prevention of fetal alcohol spectrum disorders. Antioxidants and Redox Signaling, 10(12), 20232033. doi: 10.1089/ars.2007.2019 CrossRefGoogle ScholarPubMed
Downs, S. M., Daniel, S. A., Bornslaeger, E. A., Hoppe, P. C. and Eppig, J. J. (1989). Maintenance of meiotic arrest in mouse oocytes by purines: Modulation of cAMP levels and cAMP phosphodiesterase activity. Gamete Research, 23(3), 323334. doi: 10.1002/mrd.1120230309 CrossRefGoogle ScholarPubMed
Eroglu, A., Toth, T. L. and Toner, M. (1998). Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II mouse oocytes. Fertility and Sterility, 69(5), 944957. doi: 10.1016/s0015-0282(98)00030-2 CrossRefGoogle ScholarPubMed
Eykelbosh, A. J. and Van Der Kraak, G. (2010). A role for the lysosomal protease cathepsin B in zebrafish follicular apoptosis. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 156(2), 218223. doi: 10.1016/j.cbpa.2010.02.005 CrossRefGoogle ScholarPubMed
Fülöp, C., Salustri, A. and Hascall, V. C. (1997). Coding sequence of a hyaluronan synthase homologue expressed during expansion of the mouse cumulus–oocyte complex. Archives of Biochemistry and Biophysics, 337(2), 261266. doi: 10.1006/abbi.1996.9793 CrossRefGoogle ScholarPubMed
Gérard-Monnier, D. and Chaudiere, J. (1996). [Metabolism and antioxidant function of glutathione]. Pathologie-Biologie, 44(1), 7785.Google ScholarPubMed
Goud, A. P., Goud, P. T., Diamond, M. P., Gonik, B. and Abu-Soud, H. M. (2008). Reactive oxygen species and oocyte aging: Role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radical Biology and Medicine, 44(7), 12951304. doi: 10.1016/j.freeradbiomed.2007.11.014 CrossRefGoogle ScholarPubMed
Hennings, J. M., Zimmer, R. L., Nabli, H., Davis, J. W., Sutovsky, P., Sutovsky, M. and Sharpe-Timms, K. L. (2016). Improved murine blastocyst quality and development in a single culture medium compared to sequential culture media. Reproductive Sciences, 23(3), 310317. doi: 10.1177/1933719115618281 CrossRefGoogle Scholar
Hussein, T. S., Thompson, J. G. and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Developmental Biology, 296(2), 514521. doi: 10.1016/j.ydbio.2006.06.026 CrossRefGoogle ScholarPubMed
Inoue, H., Hisamoto, N., An, J. H., Oliveira, R. P., Nishida, E., Blackwell, T. K. and Matsumoto, K. (2005). The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes and Development, 19(19), 22782283. doi: 10.1101/gad.1324805 CrossRefGoogle Scholar
Ishola, I. O., Osele, M. O., Chijioke, M. C. and Adeyemi, O. O. (2019). Isorhamnetin enhanced cortico-hippocampal learning and memory capability in mice with scopolamine-induced amnesia: Role of antioxidant defense, cholinergic and BDNF signaling. Brain Research, 1712, 188196. doi: 10.1016/j.brainres.2019.02.017 CrossRefGoogle ScholarPubMed
Itami, N., Shirasuna, K., Kuwayama, T. and Iwata, H. (2018). Short-term heat stress induces mitochondrial degradation and biogenesis and enhances mitochondrial quality in porcine oocytes. Journal of Thermal Biology, 74, 256263. doi: 10.1016/j.jtherbio.2018.04.010 CrossRefGoogle ScholarPubMed
Itano, N., Sawai, T., Yoshida, M., Lenas, P., Yamada, Y., Imagawa, M., Shinomura, T., Hamaguchi, M., Yoshida, Y., Ohnuki, Y., Miyauchi, S., Spicer, A. P., McDonald, J. A. and Kimata, K. (1999). Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. Journal of Biological Chemistry, 274(35), 2508525092. doi: 10.1074/jbc.274.35.25085 CrossRefGoogle ScholarPubMed
Juengel, J. L., Bodensteiner, K. J., Heath, D. A., Hudson, N. L., Moeller, C. L., Smith, P., Galloway, S. M., Davis, G. H., Sawyer, H. R. and McNatty, K. P. (2004). Physiology of GDF9 and BMP15 signalling molecules. Animal Reproduction Science, 82–83, 447460. doi: 10.1016/j.anireprosci.2004.04.021 CrossRefGoogle ScholarPubMed
Kang, J. T., Atikuzzaman, M., Kwon, D. K., Park, S. J., Kim, S. J., Moon, J. H., Koo, O. J., Jang, G. and Lee, B. C. (2012). Developmental competence of porcine oocytes after in vitro maturation and in vitro culture under different oxygen concentrations. Zygote, 20(1), 18. doi: 10.1017/S0967199411000426 CrossRefGoogle ScholarPubMed
Khazaei, M. and Aghaz, F. (2017). Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes. International Journal of Fertility and Sterility, 11(2), 6370. doi: 10.22074/ijfs.2017.4995 Google ScholarPubMed
Kim, J. E., Lee, D. E., Lee, K. W., Son, J. E., Seo, S. K., Li, J., Jung, S. K., Heo, Y. S., Mottamal, M., Bode, A. M., Dong, Z. and Lee, H. J. (2011). Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3-K. Cancer Prevention Research, 4(4), 582591. doi: 10.1158/1940-6207.CAPR-11-0032 CrossRefGoogle ScholarPubMed
Kim, W. J., Lee, S. E., Park, Y. G., Jeong, S. G., Kim, E. Y. and Park, S. P. (2019). Antioxidant hesperetin improves the quality of porcine oocytes during aging in vitro. Molecular Reproduction and Development, 86(1), 3241. doi: 10.1002/mrd.23079 CrossRefGoogle ScholarPubMed
Knowles, M. A., Platt, F. M., Ross, R. L. and Hurst, C. D. (2009). Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Reviews, 28(3–4), 305316. doi: 10.1007/s10555-009-9198-3 CrossRefGoogle ScholarPubMed
Kwak, S. S., Cheong, S. A., Jeon, Y., Lee, E., Choi, K. C., Jeung, E. B. and Hyun, S. H. (2012). The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology, 78(1), 86101. doi: 10.1016/j.theriogenology.2012.01.024 CrossRefGoogle ScholarPubMed
Lee, M. T., Bonneau, A. R., Takacs, C. M., Bazzini, A. A., DiVito, K. R., Fleming, E. S. and Giraldez, A. J. (2013). Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 503(7476), 360364. doi: 10.1038/nature12632 CrossRefGoogle ScholarPubMed
Lee, S. E., Sun, S. C., Choi, H. Y., Uhm, S. J. and Kim, N. H. (2012). mTOR is required for asymmetric division through small GTPases in mouse oocytes. Molecular reproduction and development, 79(5), 356–366. doi: 10.1002/mrd.22035 CrossRefGoogle Scholar
Leichsenring, M., Maes, J., Mössner, R., Driever, W. and Onichtchouk, D. (2013). Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science, 341(6149), 10051009. doi: 10.1126/science.1242527 CrossRefGoogle ScholarPubMed
Lenie, S., Cortvrindt, R., Eichenlaub-Ritter, U. and Smitz, J. (2008). Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutation Research, 651(1–2), 7181. doi: 10.1016/j.mrgentox.2007.10.017 CrossRefGoogle ScholarPubMed
Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., Noble, L. J., Yoshimura, M. P., Berger, C., Chan, P. H., Wallace, D. C. and Epstein, C. J. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genetics, 11(4), 376381. doi: 10.1038/ng1295-376 CrossRefGoogle ScholarPubMed
Liu, R. H., Sun, Q. Y., Li, Y. H., Jiao, L. H. and Wang, W. H. (2003). Effects of cooling on meiotic spindle structure and chromosome alignment within in vitro matured porcine oocytes. Molecular Reproduction and Development, 65(2), 212218. doi: 10.1002/mrd.10282 CrossRefGoogle ScholarPubMed
Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25(4), 402408. doi: 10.1006/meth.2001.1262 CrossRefGoogle ScholarPubMed
Mannick, J. B., Hausladen, A., Liu, L., Hess, D. T., Zeng, M., Miao, Q. X., Kane, L. S., Gow, A. J. and Stamler, J. S. (1999). Fas-induced caspase denitrosylation. Science, 284(5414), 651654. doi: 10.1126/science.284.5414.651 CrossRefGoogle ScholarPubMed
Marques, M. G., Nicacio, A. C., de Oliveira, V. P., Nascimento, A. B., Caetano, H. V., Mendes, C. M., Mello, M. R., Milazzotto, M. P., Assumpção, M. E. and Visintin, J. A. (2007). In vitro maturation of pig oocytes with different media, hormone and meiosis inhibitors. Animal Reproduction Science, 97(3–4), 375381. doi: 10.1016/j.anireprosci.2006.02.013 CrossRefGoogle ScholarPubMed
Ménézo, Y., Dale, B. and Cohen, M. (2010). DNA damage and repair in human oocytes and embryos: A review. Zygote, 18(4), 357365. doi: 10.1017/S0967199410000286 CrossRefGoogle ScholarPubMed
Mihalas, B. P., De Iuliis, G. N., Redgrove, K. A., McLaughlin, E. A. and Nixon, B. (2017). The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte. Scientific Reports, 7(1), 6247. doi: 10.1038/s41598-017-06372-z CrossRefGoogle ScholarPubMed
Mizushima, N. (2007). Autophagy: Process and function. Genes and Development, 21(22), 28612873. doi: 10.1101/gad.1599207 CrossRefGoogle ScholarPubMed
Newman, B. and Dai, Y. (1996). Transcription of c-mos protooncogene in the pig involves both tissue-specific promoters and alternative polyadenylation sites. Molecular Reproduction and Development, 44(3), 275288. doi: 10.1002/(SICI)1098-2795(199607)44:3<275::AID-MRD1>3.0.CO;2-J 3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Papaioannou, V. E. and Ebert, K. M. (1988). The preimplantation pig embryo: Cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development, 102(4), 793803. doi: 10.1242/dev.102.4.793 CrossRefGoogle ScholarPubMed
Park, H. J., Park, J. Y., Kim, J. W., Yang, S. G., Jung, J. M., Kim, M. J., Kang, M. J., Cho, Y. H., Wee, G., Yang, H. Y., Song, B. S., Kim, S. U. and Koo, D. B. (2018). Melatonin improves the meiotic maturation of porcine oocytes by reducing endoplasmic reticulum stress during in vitro maturation. Journal of Pineal Research, 64(2). doi: 10.1111/jpi.12458 CrossRefGoogle ScholarPubMed
Pengfei, L., Tiansheng, D., Xianglin, H. and Jianguo, W. (2009). Antioxidant properties of isolated isorhamnetin from the sea buckthorn marc. Plant Foods for Human Nutrition, 64(2), 141145. doi: 10.1007/s11130-009-0116-1 CrossRefGoogle ScholarPubMed
Robert, C., Hue, I., McGraw, S., Gagné, D. and Sirard, M. A. (2002). Quantification of cyclin B1 and p34(cdc2) in bovine cumulus–oocyte complexes and expression mapping of genes involved in the cell cycle by complementary DNA macroarrays. Biology of Reproduction, 67(5), 14561464. doi: 10.1095/biolreprod.102.002147 CrossRefGoogle ScholarPubMed
Russell, D. L. and Salustri, A. (2006). Extracellular matrix of the cumulus–oocyte complex. Seminars in Reproductive Medicine, 24(4), 217227. doi: 10.1055/s-2006-948551 CrossRefGoogle ScholarPubMed
Ryoo, I. G. and Kwak, M. K. (2018). Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicology and Applied Pharmacology, 359, 2433. doi: 10.1016/j.taap.2018.09.014 CrossRefGoogle ScholarPubMed
SAS Institute Inc. (2013). Basic SASÒ 9.4 Procedures Guide: Statistical Procedures. Second edition. Cary, North Carolina, USA: SAS Institutes Inc.Google Scholar
Schatten, G., Simerly, C. and Schatten, H. (1985). Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proceedings of the National Academy of Sciences of the United States of America, 82(12), 41524156. doi: 10.1073/pnas.82.12.4152 CrossRefGoogle ScholarPubMed
Silvestre, M. A., Alfonso, J., García-Mengual, E., Salvador, I., Duque, C. C. and Molina, I. (2007). Effect of recombinant human follicle-stimulating hormone and luteinizing hormone on in vitro maturation of porcine oocytes evaluated by the subsequent in vitro development of embryos obtained by in vitro fertilization, intracytoplasmic sperm injection, or parthenogenetic activation. Journal of Animal Science, 85(5), 11561160. doi: 10.2527/jas2006-645 Google ScholarPubMed
Storz, G. and Imlayt, J. A. (1999). Oxidative stress. Current Opinion in Microbiology, 2(2), 188194. doi: 10.1016/S1369-5274(99)80033-2 CrossRefGoogle ScholarPubMed
Sun, B., Sun, G. B., Xiao, J., Chen, R. C., Wang, X., Wu, Y., Cao, L., Yang, Z. H. and Sun, X. B. (2012). Isorhamnetin inhibits H2O2-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation. Journal of Cellular Biochemistry, 113(2), 473485. doi: 10.1002/jcb.23371 CrossRefGoogle ScholarPubMed
Sun, Q. Y., Wu, G. M., Lai, L., Bonk, A., Cabot, R., Park, K. W., Day, B. N., Prather, R. S. and Schatten, H. (2002). Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression by protein phosphatases during pig oocyte maturation and fertilization in vitro. Biology of Reproduction, 66(3), 580588. doi: 10.1095/biolreprod66.3.580 CrossRefGoogle ScholarPubMed
Tatemoto, H., Ootaki, K., Shigeta, K. and Muto, N. (2001). Enhancement of developmental competence after in vitro fertilization of porcine oocytes by treatment with ascorbic acid 2-O-alpha-glucoside during in vitro maturation. Biology of Reproduction, 65(6), 18001806. doi: 10.1095/biolreprod65.6.1800 CrossRefGoogle ScholarPubMed
Tatemoto, H., Sakurai, N. and Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: Role of cumulus cells. Biology of Reproduction, 63(3), 805810. doi: 10.1095/biolreprod63.3.805 CrossRefGoogle ScholarPubMed
Villa-Diaz, L. G. and Miyano, T. (2004). Activation of p38 MAPK during porcine oocyte maturation. Biology of Reproduction, 71(2), 691696. doi: 10.1095/biolreprod.103.026310 CrossRefGoogle ScholarPubMed
Yang, H. W., Hwang, K. J., Kwon, H. C., Kim, H. S., Choi, K. W. and Oh, K. S. (1998). Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Human reproduction (Oxford, England), 13(4), 9981002. doi: 10.1093/humrep/13.4.998 CrossRefGoogle ScholarPubMed
Yang, J. H., Shin, B. Y., Han, J. Y., Kim, M. G., Wi, J. E., Kim, Y. W., Cho, I. J., Kim, S. C., Shin, S. M. and Ki, S. H. (2014). Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicology and Applied Pharmacology, 274(2), 293301. doi: 10.1016/j.taap.2013.10.026 CrossRefGoogle ScholarPubMed
Yoshida, M., Ishigaki, K. and Pursel, V. G. (1992). Effect of maturation media on male pronucleus formation in pig oocytes matured in vitro. Molecular Reproduction and Development, 31(1), 6871. doi: 10.1002/mrd.1080310112 CrossRefGoogle ScholarPubMed
You, J., Kim, J., Lim, J. and Lee, E. (2010). Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology, 74(5), 777785. doi: 10.1016/j.theriogenology.2010.04.002 CrossRefGoogle ScholarPubMed
Zelko, I. N., Mariani, T. J. and Folz, R. J. (2002). Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine, 33(3), 337349. doi: 10.1016/s0891-5849(02)00905-x CrossRefGoogle ScholarPubMed
Zhang, W. and Liu, H. T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research, 12(1), 918. doi: 10.1038/sj.cr.7290105 CrossRefGoogle ScholarPubMed
Zuo, A., Yanying, Y., Li, J., Binbin, X., Xiongying, Y., Yan, Q. and Shuwen, C. (2011). Study on the relation of structure and antioxidant activity of isorhamnetin, quercetin, phloretin, silybin and phloretin isonicotinyl hydrazone. Free Radicals and Antioxidants, 1(4), 3947. doi: 10.5530/ax.2011.4.7 CrossRefGoogle Scholar