Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-92xsl Total loading time: 0.486 Render date: 2021-04-20T21:01:42.216Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Influence of gonadotropins on ovarian follicle growth and development in vivo and in vitro

Published online by Cambridge University Press:  08 June 2017

Maxim Filatov
Affiliation:
Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow 119991, Russia.
Yulia Khramova
Affiliation:
Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow 119991, Russia.
Elena Parshina
Affiliation:
Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow 119991, Russia.
Tatiana Bagaeva
Affiliation:
Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow 119991, Russia.
Maria Semenova
Affiliation:
Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow 119991, Russia.
Corresponding
E-mail address:

Summary

Gonadotropins are the key regulators of ovarian follicles development. They are applied in therapeutic practice in assisted reproductive technology clinics. In the present review we discuss the basic gonadotropic hormones – recombinant human follicle-stimulating hormone, its derivatives, luteinizing hormone and gonadotropin serum of pregnant mares, their origin, and application in ovarian follicle systems in in vitro culture systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Adriaens, I., Cortvrindt, R. & Smitz, J. (2004). Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum. Reprod. 19, 398408.CrossRefGoogle ScholarPubMed
Bedecarrats, G.Y., O'Neill, F.H., Norwitz, E.R., Kaiser, U.B., Teixeira, J. (2003). Regulation of gonadotropin gene expression by Müllerian inhibiting substance. Proc. Natl. Acad. Sci. USA 100, 9348–53.CrossRefGoogle ScholarPubMed
Bhide, P. & Homburg, R. (2016). Anti-Müllerian hormone and polycystic ovary syndrome. Best. Pract. Res. Clin. Obstet. Gynaecol. 37, 3845.CrossRefGoogle ScholarPubMed
Casarini, L., Santi, D., Marino, M. (2015). Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success. Reproduction 150, 175–84.CrossRefGoogle ScholarPubMed
Choi, J. & Smitz, J. (2014). Luteinizing hormone and human chorionic gonadotropin: origins of difference. Mol. Cel. Endocrinol. 383, 203–13.CrossRefGoogle Scholar
Cimino, I., Casoni, F., Liu, X., Messina, A., Parkash, J., Jamin, S.P., Catteau-Jonard, S., Collier, F., Baroncini, M., Dewailly, D., Pigny, P., Prescott, M., Campbell, R., Herbison, A.E., Prevot, V. & Giacobini, P. (2016). Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat. Commun. 7, 10055–66.CrossRefGoogle ScholarPubMed
Cortvrindt, R.G., Hu, Y., Liu, J. & Smitz, J.E. (1998). Timed analysis of the nuclear maturation of oocytes in early preantral mouse follicle culture supplemented with recombinant gonadotropin. Fertil. Steril. 70, 1114–25.CrossRefGoogle ScholarPubMed
Dierich, A., Sairam, M.R., Monaco, L., Fimia, G.M., Gansmuller, A., LeMeur, M. & Sassone-Corsi, P. (1998). Impairing follicle-stimulating hormone (FSH) signalling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc. Natl. Acad. Sci. USA 95, 13612–7.CrossRefGoogle Scholar
Dunn, L. & Fox, K.R. (2009). Techniques for fertility preservation in patients with breast cancer. Curr. Opin. Obstet. Gynecol. 21, 6873.CrossRefGoogle ScholarPubMed
Dunning, K.R., Akison, L.K., Russell, D.L., Norman, R.J. & Robker, R.L. (2011). Increased beta-oxidation and improved oocyte developmental competence in response to l-carnitine during ovarian in vitro follicle development in mice. Biol. Reprod. 85, 548–55.CrossRefGoogle ScholarPubMed
Durlinger, A.L., Kramer, P., Karels, B., de Jong, F.H., Uilenbroek, J.T., Grootegoed, J.A. & Themmen, A.P. (1999). Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology 140, 5789–96.CrossRefGoogle ScholarPubMed
Edson, M.A., Nagaraja, A.K. & Matzuk, M.M. (2009). the mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624712.CrossRefGoogle ScholarPubMed
Edwards, L.J., Kind, K.L., Armstrong, D.T. & Thompson, J.G. (2004). The effects of recombinant human follicle stimulating hormone (rhFSH) on embryo development in mice. Physiol. Endocrinol. Metab. 288, 845–51.CrossRefGoogle ScholarPubMed
Ezcurra, D. & Humaidan, P. (2014). A review of luteinising hormone and human chorionic gonadotropin when used in assisted reproductive technology. Reprod. Biol. Endocrinol. 12, 112.CrossRefGoogle ScholarPubMed
Fabbri, R. (2006). Cryopreservation of human oocytes and ovarian tissue. Cell Tissue Bank 7, 113–22.CrossRefGoogle ScholarPubMed
Fan, H.Y., Liu, Z., Shimada, M., Sterneck, E., Johnson, P.F., Hedrick, S.M. & Richards, J.S. (2009). MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324, 938–41.CrossRefGoogle ScholarPubMed
Filatov, M.A., Khramova, Y.V., Kiseleva, M.V., Malinova, I.V., Komarova, E.V. & Semenova, M.L. (2016). Female fertility preservation strategies: cryopreservation and ovarian tissue in vitro culture, current state of the art and future perspectives. Zygote 4, 119.Google Scholar
Filatov, M.A., Khramova, Y.V. & Semenova, M.L. (2015). In vitro mouse ovarian follicle growth and maturation in alginate hydrogel: current state of the art. Acta Naturae 7, 4856.Google ScholarPubMed
Gal, A., Lin, P., Barger, A.M, MacNeill, A.L. & Ko, C. (2014). Vaginal fold histology reduces the variability introduced by vaginal exfoliative cytology in the classification of mouse estrous cycle stages. Toxicol. Pathol. 42, 1212–20.CrossRefGoogle ScholarPubMed
Hayes, E., Kushnir, V., Ma, X., Biswas, A., Prizant, H., Gleicher, N. & Sen, A. (2016). Intra-cellular mechanism of anti-Müllerian hormone (AMH) in regulation of follicular development. Mol. Cell. Endocrinol. 433, 5665.CrossRefGoogle ScholarPubMed
Hornick, J.E., Duncan, F.E., Shea, L.D. & Woodruff, T.K. (2013). Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction 145, 126.CrossRefGoogle ScholarPubMed
Hu, J., Ma, X., Bao, J.C., Li, W., Chen, D., Gao, Z., Lei, A., Yang, C. & Wang, H. (2011). Insulin–transferrin–selenium (ITS) improves maturation of porcine oocytes in vitro . Zygote 19, 191–7.CrossRefGoogle ScholarPubMed
Ilgaz, N.S., Aydos, O.S., Karadag, A., Taspinar, M., Eryilmaz, O.G. & Sunguroglu, A. (2015). Impact of follicle-stimulating hormone receptor variants in female infertility. J. Assist. Reprod. Genet. 32, 1659–68.CrossRefGoogle ScholarPubMed
Jin, S.Y., Lei, L., Shikanov, A., Shea, L.D. & Woodruff, T.K. (2010). A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse. Fertil. Steril. 93, 2633–9.CrossRefGoogle ScholarPubMed
Kelley, R.L., Kind, K.L., Lane, M., Robker, R.L., Thompson, J.G. & Edwards, L.J. (2006). Recombinant human follicle-stimulating hormone alters maternal ovarian hormone concentrations and the uterus and perturbs fetal development in mice. Physiol. Endocrinol. Metab. 291, 761–70.CrossRefGoogle ScholarPubMed
Knight, P.G. & Glister, C. (2006). TGF-beta superfamily members and ovarian follicle development. Reproduction 132, 191206.CrossRefGoogle ScholarPubMed
Kosheleva, N.V., Ilina, I.V., Zurina, I.M., Roskova, A.E., Gorkun, A.A., Ovchinnikov, A.V., Agranat, M.B. & Saburina, I.N. (2016). Laser-based technique for controlled damage of mesenchymal cell spheroids: a first step in studying reparation in vitro . Biol. Open. 7, 9931000.CrossRefGoogle Scholar
Kreeger, P.K., Fernandes, N.N., Woodruff, T.K. & Shea, L.D. (2005). Regulation of mouse follicle development by follicle-stimulating hormone in three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol. Reprod. 73, 942–50.CrossRefGoogle ScholarPubMed
Lee, M.M., Donahoe, P.K., Hasegawa, T., Silverman, B., Crist, G.B., Best, S., Hasegawa, Y., Noto, R.A., Schoenfeld, D. & MacLaughlin, D.T. (1996). Müllerian inhibiting substance in humans: normal levels from infancy to adulthood. J. Clin. Endocrinol. Metab. 81, 571–6.Google Scholar
Li, L., Zhou, X., Wang, X., Wang, J., Zhang, W., Wang, B., Cao, Y. & Kee, K. (2016). A dominant negative mutation at the ATP binding domain of AMHR2 is associated with a defective anti-Müllerian hormone signaling pathway. Mol. Hum. Reprod. 22, 669–78.CrossRefGoogle ScholarPubMed
Liu, X., Qiao, P., Jiang, A., Jiang, J., Han, H., Wang, L. & Ren, C. (2015). Paracrine regulation of steroidogenesis in theca cells by granulosa cells derived from mouse preantral follicles. BioMed. Res. Int. 2015, 18.Google ScholarPubMed
Loreti, N., Ambao, V., Andreone, L., Trigo, R., Bussmann, U. & Campo, S. (2013b). Effect of sialylation and complexity of FSH oligosaccharides on inhibin production by granulosa cells. Reproduction 145, 127–35.CrossRefGoogle ScholarPubMed
Loreti, N., Fresno, C., Barrera, D., Andreone, L., Albarran, S.L., Fernandez, E.A., Larrea, F. & Campo, S. (2013a). The glycan structure in recombinant human FSH affects endocrine activity and global gene expression in human granulosa cells. Mol. Cel. Endocrinol. 366, 6880.CrossRefGoogle ScholarPubMed
Lunenfeld, B. (2004). Historical perspectives in gonadotrophin therapy. Hum. Reprod. Update 10, 453–67.CrossRefGoogle ScholarPubMed
Łebkowska, A. & Kowalska, I. (2017). Anti-Müllerian hormone and polycystic ovary syndrome. Endokrynol. Pol. 68, 74–8.Google ScholarPubMed
Macklon, N.S., Stouffer, R.L., Giudice, L.C. & Fauser, B.C. (2006). the science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr. Rev. 27, 170207.CrossRefGoogle ScholarPubMed
Meczekalski, B., Czyzyk, A., Kunicki, M., Podfigurna-Stopa, A., Plociennik, L., Jakiel, G., Maciejewska-Jeske, M. & Lukaszuk, K. (2016). Fertility in women of late reproductive age: the role of serum anti-Müllerian hormone (AMH) levels in its assessment. J. Endocrinol. Invest. 39, 1259–65.CrossRefGoogle ScholarPubMed
Morgan, S., Campbell, L., Allison, V., Murray, A. & Spears, N. (2015). Culture and co-culture of mouse ovaries and ovarian follicles. J. Vis. Exp. 97, 110.Google Scholar
Park, K.E., Ku, S.U., Jung, K.C., Liu, H.C., Kim, Y.Y., Kim, Y.J., Kim, S.H., Choi, Y.M., Kim, J.G. & Moon, S.Y. (2013). Effects of urinary and recombinant gonadotropins on in vitro maturation outcomes of mouse preantral follicles. Reprod. Sci. 20, 909–16.CrossRefGoogle ScholarPubMed
Pierre, A., Peigne, M., Grynberg, M., Arouche, N., Taieb, J., Hesters, L., Gonzales, J., Picard, J.Y., Dewailly, D., Fanchin, R., Catteau-Jonard, S. & di Clemente, N. (2013). Loss of LH-induced down-regulation of anti-müllerian hormone receptor expression may contribute to anovulation in women with polycystic ovary syndrome. Hum. Reprod. 28, 762–9.CrossRefGoogle ScholarPubMed
Rajpert-De Meyts, E., Jorgensen, N., Graem, N., Muller, J., Cate, R.L. & Skakkebaek, N.E. (1999). Expression of anti-Müllerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J. Clin. Endocr. Metab. 84, 3836–44.Google ScholarPubMed
Richards, J.S., Russell, D.L., Ochsner, S., Hsieh, M., Doyle, K.H., Falender, A.E., Lo, Y.K. & Sharma, S.C. (2002). Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent. Prog. Horm. Res. 57, 195220.CrossRefGoogle ScholarPubMed
Roche, J.F. (1996). Control and regulation of folliculogenesis – a symposium in perspective. Rev. Reprod. 1, 1927.CrossRefGoogle Scholar
Ruman, J.I., Pollak, S., Trousdale, R.K., Klein, J. & Lustbader, J.W. (2005). Effects of long-acting recombinant human follicle-stimulating hormone analogs containing N-linked glycosylation on murine folliculogenesis. Fertil. Steril. 83, 1303–9.CrossRefGoogle ScholarPubMed
Sanchez, F., Romero, S., Albuz, F.K. & Smitz, J. (2012). In vitro follicle growth under non-attachment conditions and decreased FSH levels reduces Lhcgr expression in cumulus cells and promotes oocyte developmental competence. Assist. Reprod. Genet. 29, 141–52.Google ScholarPubMed
Segers, I., Adriaenssens, T., Wathlet, S. & Smitz, J. (2012). Gene expression differences induced by equimolar low doses of LH or hCG in combination with FSH in cultured mouse antral follicles. J. Endocrinol. 215. 269–80.CrossRefGoogle ScholarPubMed
Shikanov, A., Xu, M., Woodruff, T.K. & Shea, L.D. (2009). interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials 30, 5476–85.CrossRefGoogle ScholarPubMed
Skory, R.M., Xu, Y., Shea, L.D. & Woodruff, T.K. (2015). Engineering the ovarian cycle using in vitro follicle culture. Hum. Reprod. 30, 1386–95.CrossRefGoogle ScholarPubMed
Sun, F., Betzendahl, I., Shen, Y., Cortvrindt, R., Smitz, J. & Eichenlaub-Ritter, U. (2004). Preantral follicle culture as a novel in vitro assay in reproductive toxicology testing in mammalian oocytes. Mutagenesis 19, 1325.CrossRefGoogle ScholarPubMed
Trousdale, R.K., Yu, B., Pollak, S.V., Husami, N., Vidali, A. & Lustbader, J.V. (2009). Efficacy of native and hyperglycosylated follicle stimulating hormone analogues for promoting fertility in female mice. Fertil. Steril. 91, 265–70.CrossRefGoogle Scholar
Visser, J.A. & Themmen, A.P. (2005). Anti-Müllerian hormone and folliculogenesis. Mol. Cell. Endocrinol. 234, 81–6.CrossRefGoogle ScholarPubMed
Wang, S., Yang, S., Lai, Z., Ding, T., Shen, W., Shi, L., Jiang, J., Ma, L., Tian, Y., Du, X., Luo, A. & Wang, S. (2013). Effects of culture and transplantation on follicle activation and early follicular growth in neonatal mouse ovaries. Cell Tissue Res. 354, 609–21.CrossRefGoogle ScholarPubMed
Weenen, C., Laven, J.S., Von Bergh, A.R., Cranfield, M., Groome, N.P., Visser, J.A., Kramer, P., Fauser, B.C. & Themmen, A.P. (2004). Anti-Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol. Hum. Reprod. 10, 7783.CrossRefGoogle ScholarPubMed
West, E.R., Xu, M., Woodruff, T.K. & Shea, L.D. (2007). Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28, 4439–48.CrossRefGoogle ScholarPubMed
Wolfenson, C., Groisman, J., Couto, A.S., Hedenfalk, M., Cortvrindt, R.G., Smitz, J.E. & Jespersen, S. (2005). Batch-to-batch consistency of human-derived gonadotrophin preparations compared with recombinant preparations. Reprod. Biomed. Online 10, 442–54.CrossRefGoogle ScholarPubMed
Xu, J., Lawson, M.S., Yeoman, R.R., Molskness, T.A., Ting, A.Y., Stouffer, R.L. & Zelinski, M.B. (2013). Fibrin promotes development and function of macaque primary follicles during encapsulated three-dimensional culture. Hum. Reprod. 28, 2187–200.CrossRefGoogle ScholarPubMed
Xu, M., Banc, A., Woodruff, T.K. & Shea, L.D. (2009). Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol. Bioeng. 103, 378–86.CrossRefGoogle ScholarPubMed
Zhang, Y.L., Liu, X.M., Ji, S.Y., Sha, Q.Q., Zhang, J. & Fan, H.Y. (2015). ERK1/2 activities are dispensable for oocyte growth but are required for meiotic maturation and pronuclear formation in mouse. J. Genet. Genom. 42, 477–85.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 111
Total number of PDF views: 279 *
View data table for this chart

* Views captured on Cambridge Core between 08th June 2017 - 20th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of gonadotropins on ovarian follicle growth and development in vivo and in vitro
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of gonadotropins on ovarian follicle growth and development in vivo and in vitro
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of gonadotropins on ovarian follicle growth and development in vivo and in vitro
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *