Skip to main content Accessibility help
×
Home

When pain and stress interact: looking at stress-induced analgesia and hyperalgesia in birds

  • B.I. BAKER (a1), K.L. MACHIN (a2) and K. SCHWEAN-LARDNER (a1)

Abstract

Stress can exert modulatory effects on pain perception in animals, as exposure to a stressor can result in either the reduction or amplification of the perceived severity of pain. These phenomena are widely described as stress-induced analgesia (SIA) and stress-induced hyperalgesia (SIH). The two are mediated by the same underlying mechanisms, but occur due to different stressors and different responses from the pain pathway. SIA and SIH have been demonstrated with a variety of stress and pain stimuli in rodents, humans and other mammals. There is some evidence that SIA occurs in birds and that they have the neurological systems and brain regions necessary for SIH. Tonic immobility (TI) is related to SIA in mammals, and there is evidence the avian brain is compatible with TI having analgesic effect, but it could have a hyperalgesic effect. This review looks at the mechanisms and evidence of SIA, SIH and TI in mammals and discusses evidence relating to the occurrence of these phenomena in birds.

Copyright

Corresponding author

Corresponding author: Karen.schwean@usask.ca

References

Hide All
AGUGGIA, M. (2003) Neurophysiology of pain. Neurological Science 24: 57-60.
AMIT, Z. and GALINA, Z.H. (1986) Stress-Induced Analgesia: Adaptive Pain Suppression. Physiological Reviews 66 (4): 1091-1120.10.1152/physrev.1986.66.4.1091
BLAS, J. (2015) Stress in birds, in: SCANES, C.G. (Ed) Sturkie's Avian Physiology, 6th ed, pp. 769-810 (London, Elsevier).
BODNAR, R.J., KELLY, D.D., BRUTUS, M. and GLUSMAN, M. (1979) Stress-Induced Analgesia: Neural and Hormonal Determinants I. Neuroscience & Biobehavioral Reviews 4: 87-100.10.1016/0149-7634(80)90028-7
BODNAR, R.J. (1986) Neuropharmacological and Neuroendocrine Substrates of Stress Induced Analgesia. Annals New York Academy of Sciences 467 (1): 345-360.10.1111/j.1749-6632.1986.tb14639.x
BOKKERS, E.A.M., KOENE, P., RODENBURG, T.B., ZIMMERMAN, P.H. and SPRUIJT, B.M. (2004) Working for food under conditions of varying motivation in broilers. Animal Behaviour 68 (1): 105-113.10.1016/j.anbehav.2003.10.013
BUTLER, R.K. and FINN, D.P. (2009) Stress-Induced Analgesia. Progress in Neurobiology 88: 184-202.10.1016/j.pneurobio.2009.04.003
CARSTEN, E.E. (1987) Endogenous pain suppression mechanism. Journal of American Veterinary Medical Association 191 (10): 1203-1206.
DA SILVA, L.F.S. and MENESCAL-DE-OLIVEIRA, L. (2007) Role of opioidergic and GABAergic neurotransmission of the nucleus raphe magnus in the modulation of tonic immobility in guinea pigs. Brain Research Bulletin 72: 25-31.10.1016/j.brainresbull.2006.12.005
DOUGLAS, J.M., GUZMAN, D.S.M. and PAUL-MURPHY, J.R. (2018) Pain in Birds: The Anatomical and Physiological Basis. Veterinary Clinics of North America: Exotic Clinics 21: 17-31.
DICKENSON, A.H. and KIEFFER, B.H. (2013) Opiods: Basic Mechanisms, in: MCMAHON, S., KOLTZENBURG, M., TRACEY, I. & TURK, D. (Eds) Wall & Melzack's Textbook of Pain, 6th ed, pp. 413-428 (Philadelphia, Elsevier Saunders).
FELTENSTEIN, M.W., FORDA, N.G., FREEMAN, K.B. and SUFKAA, K.J. (2002) Dissociation of stress behaviours in the chick social-separation-stress procedure. Physiology & Behavior 75: 675-679.10.1016/S0031-9384(02)00660-1
FOWLER, C.J., NILSSON, O., ANDERSSON, M., DISNEY, G., JACOBSSON, S.O.P. and TIGER, G. (2001) Pharmacological Properties of Cannabinoid Receptors in the Avian brain: Similarity of Rat and Chicken Cannabinoid1 Receptor Recognition Sites and Expression of Cannabinoid2 Receptor-Like Immunoreactivity in the Embryonic Chick Brain. Pharmacology & Toxicology 88: 213-222.
GENTLE, M.J. (2011) Pain issues in poultry. Applied Animal Behaviour Science 135: 252-258.
GENTLE, M.J. and CORR, S.A. (1995) Endogenous analgesia in the chicken. Neuroscience Letters 201: 211-214.10.1016/0304-3940(95)12181-1
GENTLE, M.J, JONES, R.B. and WOOLLEY, S.C. (1989) Physiological Changes during Tonic Immobility in Gallus gallus var domesticus. Physiology & Behavior 46: 843-847.10.1016/0031-9384(89)90046-2
GENTLE, M.J. and TILSTON, V.L. (1999) Reduction in Peripheral Inflammation by Changes in Attention. Physiology & Behavior 66 (2): 289-292.10.1016/S0031-9384(98)00297-2
HOHMANN, A.G. and RICE, A.S.C. (2013) Cannabinoids, in: MCMAHON, S., KOLTZENBURG, M., TRACEY, I. & TURK, D. (Eds) Wall & Melzack's Textbook of Pain, 6th ed, pp. 538-551 (Philadelphia, Elsevier Saunders).
IMBE, H., IWAI-LIAO, Y. and SENBA, E. (2006) Stress-induced hyperalgesia: animal models and putative mechanisms. Frontiers in Bioscience 11: 2179-2192.10.2741/1960
IASP (1994) Part III: Pain Terms, A Current List with Definitions and Notes on Usage, in: MERSKEY, H. & BOGDUK, N. (Eds) Classification of Chronic Pain, pp. 209-214 (Seattle, IASP Press).
JENNINGS, E.M., OKINE, B.N., ROCHE, M. and FINN, D.P. (2014) Stress-induced hyperalgesia. Progress in Neurobiology 121: 1-18.
JONES, R.B., BEUVING, G. and BLOKHUIS, H.J. (1987) Tonic Immobility and Heterophil/Lymphocyte Responses of the Domestic Fowl to Corticosterone Infusion. Physiology & Behavior 42: 249-253.
JØRUM, E. (1988) Analgesia or hyperalgesia following stress correlated with emotional behaviour in rats. Pain 32: 341-348.10.1016/0304-3959(88)90046-2
KAPITZKE, D., VETTER, I. and CABOT, P.J. (2005) Endogenous opioid analgesia in peripheral tissues and the clinical implications for pain control. Therapeutics and Clinical Risk Management 1 (4): 279-297.
KAVALIERS, M. and COLWELL, D.D. (1991) Sex differences in opioid and non-opioid mediated predator-induced analgesia in mice, Brain Research 568: 173-177.10.1016/0006-8993(91)91394-G
KUENZEL, W.J. (2007) Neurobiological Basis of Sensory Perception: Welfare Implications of Beak Trimming. Poultry Science 86 (6): 1273-1282.10.1093/ps/86.6.1273
LARIVIERE, W.R. and MELZACK, R. (2000) The role of corticotropin-releasing factor in pain and analgesia. Pain 84: 1-12.10.1016/S0304-3959(99)00193-1
MACHIN, K. (2005) Avian Pain: Physiology and Evaluation. Compendium 27 (2): 98-108.
MARTENSON, M.E., CETAS, J.S. and HEINRICHER, M.M. (2009) A possible neural basis for stress-induced hyperalgesia. Pain 142: 236-244.10.1016/j.pain.2009.01.011
MAUK, M.D., OLSON, R.D., LAHOSTE, G.J. and OLSON, G.A. (1981) Tonic Immobility Produces Hyperalgesia and Antagonizes Morphine Analgesia. Science 213: 353-354.10.1126/science.7244620
MELLEU, F.F., LINO-DE-OLIVERIA, C. and MARINO-NETO, J. (2017) The mesencephalic GCt–ICo complex and tonic immobility in pigeons (Columba livia): a c-Fos study. Brain Structure and Function 222: 1253-1265.10.1007/s00429-016-1275-0
MORMÈDE, P., ANDANSON, S., AUPÉRIN, B., BEERDA, B., GUÉMENÉ, D., MALMKVIST, J., MANTECA, X., MANTEUFFEL, G., PRUNET, P., VAN REENEN, C.G., RICHARD, S. and VEISSIER, I. (2007) Exploration of the hypothalamic–pituitary–adrenal function as a tool to evaluate animal welfare. Physiology & Behavior 92: 317-339.10.1016/j.physbeh.2006.12.003
MUIR, W.W. (2009) Pain and Stress, in: GAYNOR, J.S. & MUIR, W.W. (Eds) Handbook of Veterinary Pain Management, pp. 42-56 (St. Louis, Elsevier).
PARIKH, D., HAMID, A., FRIEDMAN, T.C., NGUYEN, K., TSENG, A., MARQUEZ, P. and LUTFY, K. (2011) Stress-induced analgesia and endogenous opioid peptides: The importance of stress duration. European Journal of Pharmacology 650: 563-567.10.1016/j.ejphar.2010.10.050
PETERS, R.H. and HUGHES, R.A. (1978) Naloxone Interactions with Morphine- and Shock-Potentiated Tonic Immobility in Chickens. Pharmacology Biochemistry & Behavior 9: 153-156.10.1016/0091-3057(78)90157-0
PORRO, C.A. and CARLI, G. (1988) Immobilization and restraint effects on pain reactions in animals. Pain 32: 289-307.10.1016/0304-3959(88)90041-3
REINER, A., YAMAMOTO, K. and KARTEN, H.J. (2005) Organization and Evolution of the Avian Forebrain. The Anatomical Record 287 (A): 1080-1102.10.1002/ar.a.20253
SIEGEL, H.S. (1980) Physiological Stress in Birds. Bioscience 30 (8): 529-534.10.2307/1307973
STAROWICZ, K. and FINN, D.P. (2017) Cannabinoids and Pain: sites and Mechanisms of Action. Advances in Pharmacology 80: 437-475.
SUFKA, K.J. and HUGHES, R.A. (1991) Differential Effects of Handling on Isolation-Induced Vocalizations, Hypoalgesia, and Hyperthermia in Domestic Fowl. Physiology & Behavior 50: 129-133.10.1016/0031-9384(91)90508-L
TRAMULLAS, M., DINAN, T.G. and CRYAN, J.F. (2012) Chronic psychosocial stress induces visceral hyperalgesia in mice. Stress 15 (3): 281-292.
TREBILCOCK, P.D. (2015) Investigating the electrical response of the brain of the domestic chicken (Gallus gallus domesticus) to nociception through the use of depth electroencephalography (dEEG). M.Sc. Thesis, Massey University.
ULRICH-LAI, Y.M. and HERMAN, J.P. (2009) Neural Regulation of Endocrine and Autonomic Stress Responses. Nature Reviews Neuroscience 10 (6): 397-409.
WALLNAU, L.B. and GALLUP, G.G. (1977) A Serotonergic, Midbrain-Raphe Model of Tonic Immobility. Biobehavioral Reviews 1: 35-43.
WEEKS, C.A. and NICOL, C.J. (2006) Behavioural needs, priorities and preferences of laying hens. World's Poultry Science Journal 62 (2): 296-307.
WOODHAMS, S.G., SAGAR, D.R., BURSTON, J.J. and CHAPMAN, V. (2015) The role of the Endocannabinoid Systems in Pain, in: SCHAIBLE, H.G. (Ed) Pain Control, Handbook of Experimental Pharmacology, vol 227, pp. 119-143 (Berlin, Springer).
WYLIE, L.M. and GENTLE, M.J. (1998) Feeding-induced Tonic Pain Suppression in the Chicken: Reversal by Naloxone. Physiology & Behavior 64 (1): 27-30.
YAMADA, K. and NABESHIMA, T. (1995) Stress-induced behavioral responses and multiple opioid systems in the brain. Behavioural Brain Research 67: 133-145.
YILMAZ, P., DIERS, M., DIENER, S., RANCE, M., WESSA, M. and FLOR, H. (2010) Brain correlates of stress-induced analgesia. Pain 151: 552-529.

Keywords

When pain and stress interact: looking at stress-induced analgesia and hyperalgesia in birds

  • B.I. BAKER (a1), K.L. MACHIN (a2) and K. SCHWEAN-LARDNER (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed