Skip to main content Accessibility help
×
Home

Sub-clinical necrotic enteritis: its aetiology and predisposing factors in commercial broiler production

  • M.W.C.D. PALLIYEGURU (a1) (a2) and S.P. ROSE (a1)

Abstract

Sub-clinical necrotic enteritis (NE) is a major economic cost to the broiler production industry due to poor growth and feed conversion efficiency of broiler chicken flocks, higher condemnation of livers or rarely the whole carcasses at the slaughter house and an increased risk of microbial contamination of poultry meat. Sub-clinical NE is a multifactorial disease although Clostridium perfringens plays a major role in its pathogenesis. Its diagnosis and confirmation are quite different from those of general infectious diseases. Disease confirmation is from the presence of necrotic or ulcerative lesions on the small intestinal mucosa with identifiable aggregates of pathogenic C. perfringens. C. perfringens numbers in the small intestinal digesta or the mucosal scrapings are not correlated with disease severity, whereas counts above 106 cfu/g in the caecal contents indicate an increased probability of NE-specific gut lesions. Not only does the presence and counts of C. perfringens strains capable of producing related toxins affect the incidence of the disease but also a number of predisposing factors are important in the aetiology of NE. The major factors that predispose growing chickens to sub-clinical NE are diet variables, diseases that cause mucosal damage of the intestine and environmental factors that either alter the development of gut associated lymphoid tissue or change litter quality within the production house. Dietary variables may be a major cause of variation in sub-clinical NE in commercial broiler production; differences in polysaccharides, lipids, protein sources, protein digestibility and the presence of antinutritive factors have been identified as variables affecting the incidence of the disease.

Copyright

Corresponding author

Corresponding author: Chamari@live.co.uk

References

Hide All
ABILDGAARD, L., SONDERGAARD, T.E., ENGBERG, R.M., SCHRAMM, A. and HØJBERG, O. (2010) In vitro production of necrotic enteritis toxin B, NetB, by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chickens. Veterinary Microbiology 144: 231-235.
AL-SHEIKHLY, F. and AL-SAIEG, A. (1980) Role of coccidiosis in the occurrence of necrotic enteritis of chickens. Avian Diseases 24: 324-333.
AL-SHEIKHLY, F. and TRUSCOTT, R.B. (1977a) The pathology of necrotic enteritis of chickens following Infusion of broth cultures of Clostridium perfringens into the duodenum. Avian Diseases 21: 230-240.
AL-SHEIKHLY, F. and TRUSCOTT, R.B. (1977b) The pathology of necrotic enteritis of chickens following Infusion of crude toxins of Clostridium perfringens into the duodenum. Avian Diseases 21: 241-255.
AL-SHEIKHLY, F. and TRUSCOTT, R.B. (1977c) The interaction of Clostridium perfringens and its toxins in the production of necrotic enteritis of chickens. Avian Diseases 21: 256-263.
ANNETT, C.B., VISTE, J.R., CHIRINO-TREJO, M., CLASSEN, H.L., MIDDLETON, D.M. and SIMKO, E. (2002) Necrotic enteritis: effect of barley, wheat and corn diets on proliferation of Clostridium perfringens type A. Avian Pathology 3: 599-602.
APAJALAHTI, J.H.A., KETTUNEN, A., BEDFORD, M.R. and HOLBEN, W.E. (2001) Percent G+C profiling accurately reveals diet-related differences in gastrointestinal microbial community of broiler chickens. Applied Environmental Microbiology 67: 5656-5667.
BANNAM, T.L., YAN, X., HARRISON, P.F., SEEMANN, T., KEYBURN, A.L., STUBENRAUCH, C., WEERAMANTRI, L.H., CHEUNG, J.K., MCCLANE, B.A., BOYCE, J.D., MOORE, R.J. and ROOD, J.I. (2011) Necrotic enteritis-derived Clostridium perfringens strain with three closely related independently conjugative toxin and antibiotic resistance plasmids. mBio. 2: e00190-11.
BARBARA, A.J., TRINH, H.T., GLOCK, R.D. and SONGER, J.G. (2008) Necrotic enteritis-producing strains of Clostridium perfringens displace non-necrotic enteritis strains from the gut of chicks. Veterinary Microbiology 126: 377-387.
BAR-SHIRA, E., SKLAN, D. and FRIEDMAN, A. (2003) Establishment of immune competence in the avian GALT during the immediate post-hatch period. Development and Comparative Immunology 27: 147-157.
BEDFORD, M.R. and CLASSEN, H.L. (1992) Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. Journal of Nutrition 122: 560-569.
BEN-NATHAN, B., DRABKIN, N. and HELLER, D. (1981) The effect of starvation on the immune response of chickens. Avian Diseases 25: 214-217.
BRANTON, S.L., REECE, F.N. and HAGLER-JR, W.M. (1987) Influence of a wheat diet on mortality of broiler chickens associated with necrotic enteritis. Poultry Science 66: 1326-1330.
BRANTON, S.L., LOTT, B.D., DEATON, J.W., MASLIN, W.R., AUSTIN, F.W., POTE, L.M., KEIRS, R.W., LATOUR, M.A. and DAY, E.J. (1997) The effect of added complex carbohydrates or added dietary fibre on necrotic enteritis lesions in broiler chickens. Poultry Science 76: 24-28.
CHALMERS, G., BRUCE, H.L., HUNTER, D.B., PARREIRA, V.R., KULKARNI, R.R., JIANG, Y.F., PRESCOTT, J.F. and BOERLIN, P. (2008) Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations. Journal of Clinical Microbiology 46: 3957-3964.
CHOCT, M. and ANNISON, G. (1992) The inhibition of nutrient digestion by wheat pentosans. British Journal of Nutrition 67: 123-132.
COLLETT, S.R. (2004) Controlling gastrointestinal disease to improve absorptive membrane integrity and optimize digestion efficiency, in: TUCKER, L.A. & TAYLOR-PICKARD, D.J.A. (Eds) Interfacing Immunity, Gut Health and Performance, pp. 77-92 (Nottingham, Nottingham University Press).
COOPER, K.K. and SONGER, J.G. (2010) Virulence of Clostridium perfringens in an experimental model of poultry necrotic enteritis. Veterinary Microbiology 142: 323-328.
CRAVEN, S.E. (2000) Colonisation of the intestinal tract by Clostridium perfringens and faecal shedding in the diet-stressed and unstressed broiler chickens. Poultry Science 79: 843-849.
CRAVEN, S.E., STERN, N.J., BAILEY, S.J. and COX, N.A. (2001) Incidence of Clostridium perfringens in broiler chickens and their environment during production and processing. Avian Diseases 45: 887-896.
CRESPO, R., FISHER, D.J., SHIVAPRASAD, H.L., FERNANDEZ-MIYAKAWA, M.E. and UZAL, F.A. (2007) Toxinotypes of Clostridium perfringens isolated from sick and healthy avian species. Journal of Veterinary Diagnostic Investigation 19: 329-333.
DAHIYA, J.P., WILKIE, D.C., VAN KESSEL, A.G. and DREW, M.D. (2006) Potential strategies in broiler chickens in post-antibiotic era. Animal Feed Science and Technology 129: 60-88.
DAS, A., MAZUMDER, Y., DUTTA, B.K., SHOME, B.R., BUJARBARUAH, K.M. and KUMAR, A. (2008) Clostridium perfringens type A from broiler chicken with necrotic enteritis. International Journal of Poultry Science 7: 601-609.
DREW, M.D., SYED, N.A., GOLDADE, B.G., LAARVELD, B. and VAN KESSEL, A.G. (2004) Effect of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry Science 83: 414-420.
DROUAL, R., SHIVAPRASAD, H.L. and CHIN, R.P. (1994) Coccidiosis and Necrotic enteritis in turkeys. Avian Diseases 38: 177-183.
ELWINGER, K., BERNDTSON, E., ENGSTOM, B., FOSSUM, O. and WALDENSTEDT, L. (1998) Effect of antibiotic growth promoters and anticoccidials on growth of Clostridium perfringens in the caeca and on performance of broiler chickens. Acta Veterinaria Scandinavica 39: 433-441.
ENGSTROM, B.E., FERMER, C., LINDBERG, A., SAARINEN, E., BAVERUD, V. and GUNNARSSON, A. (2003) Molecular typing of Clostridium perfringens from healthy and diseased poultry. Veterinary Microbiology 94: 225-235.
FERNANDO, P.S., ROSE, S.P., MACKENZIE, A.M. and SILVA, S.S.P. (2011) Effect of diets containing potato protein or soya bean meal on the incidence of spontaneously occurring sub-clinical NE crotic enteritis and the physiological response in broiler chickens. British Poultry Science 52: 106-114.
GARRIDO, M.N., SKJERVHEIM, M.H., OPPEGAARD, H. and SØRUM, H. (2004) Acidified litter benefits the intestinal flora balance of broiler chickens. Applied Environmental Microbiology 70: 5208-5213.
GHOLAMIANDEKHORDI, A.R., DUCATELLE, R., HYNDRICKX, M., HAESEBROUCK, F. and VAN IMMERSEEL, F. (2006) Molecular and phenotypical characterisation of Clostridium perfringens isolates from poultry flocks with different disease status. Veterinary Microbiology 113: 143-152.
GIOVANNINI, C., MANCINI, E. and DE VINCENZI, M. (1996) Inhibition of the cellular metabolism of Caco-2 cells by prolamin peptides from cereals toxic for coeliacs. Toxicology In Vitro 10: 533-538.
GOHL, B. and GOHL, I. (1977) The effect of viscous substances on the transit time of the Barley digesta in rats. Journal of the Science of Food and Agriculture 28: 911-915.
GRANUM, P.E. and PECK, M.W. (2006) Methods for use with food poisoning Clostridia, in: MAINIL, J., DUCHESNES, C., GRANUM, P.E., MENOZZI, M.G., PECK, M., PELKONEN, S., POPOFF, M., STACKEBRANDT, E. & TITBALL, R. (Eds) Genus Clostridium: Clostridia in medical, veterinary and food microbiology diagnosis and typing, pp. 188-198 (Luxembourg: Office for Official Publications of the European Communities).
GUTIERREZ, J., BARRY-RYAN, C. and BOURKE, P. (2008) The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology 124: 91-97.
HERMANS, P.G. and MORGAN, K.L. (2007) Prevalence and associated risk factors of necrotic enteritis on broiler farms in the United Kingdom; across-sectional survey. Avian Pathology 36: 43-51.
INAGAKI, T., MOSCHETTA, A., LEE, Y.K., PENG, L., ZHAO, G., DOWNES, M., YU, T., SHELTON, J.M., RICHARDSON, J.A., REPA, J.J., MANGELSDORF, D.J. and KLIEWER, S.A. (2006) Regulation of antibacterial defence in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Science of the USA (PNAS) 103: 3920-3925.
JADHAV, S.J. and KADAM, S.S. (1998) Potato, in: SALUNKHE, D.K. & KADAM, S.S. (Eds) Handbook of Vegetable Science and Technology, Production, Composition, Storage, and Processing, pp. 11-69 (New York, Marcel Dekker Inc).
JOHANSSON, A. (2006) Clostridium perfringens the causal agent of necrotic enteritis in poultry. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala.
JOHNSON, D.C. and PINEDO, C. (1971) Gizzard erosion and ulceration in Peru broilers. Avian Diseases 15: 835-837.
JOHNSON, I.T. and GEE, J.M. (1981) Effect of gel-forming gums on the intestinal unstirred layer and sugar transport in vitro. Gut 22: 398-403.
KAHN, C.M. and LINE, S. (2005) The Merck Veterinary Manual 9th ed. pp. 2185-2336 (Whitehouse Station, NJ, USA: Merck and Co. Inc.)
KALDHUSDAL M.I. (2000) Necrotic enteritis as affected by dietary ingredients. World Poultry 16: 42-43.
KALDHUSDAL, M.I. and HOFSHAGEN, M. (1992) Barley inclusion and avoparcin supplementation in broiler diets. 2. Clinical pathological and bacteriological findings in a mild form of Necrotic Enteritis. Poultry Science 71: 1145-1153.
KALDHUSDAL, M.I. and SKJERVE, E. (1996) Association between cereal contents in the diet and incidence of necrotic enteritis in broiler chickens in Norway. Preventive Veterinary Medicine 28: 1-16.
KALDHUSDAL, M.I., HOFSHAGEN, M., LOVLAND, A., LANGSTRAND, H. and REDHEAD, K. (1999) Necrotic enteritis challenge models with broiler chickens raised on litter: evaluation of preconditions, Clostridium perfringens strains and outcome variables. FEMS Immunology and Medical Microbiology 24: 337-343.
KEYBURN, A.L., BOYCE, J.D., VAZ, P., BANNAM, T.L., FORD, M.E. and PARKER, D. (2008) NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathogens 4: e26-11.
KNARREBORG, A., SIMON, M.A., ENGBERG, R.M., JENSEN, B.B. and TANNOCK, G.W. (2002a) Effect of dietary fat source and sub-therapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens. Applied and Environmental Microbiology 68: 5918-5924.
KNARREBORG, A., ENGBERG, R.M., JENSEN, S.K. and JENSEN, B.B. (2002b) Quantitative determination of bile salt hydrolase activity in bacteria isolated from the small intestine of chickens. Applied and Environmental Microbiology 68: 6425-6428.
KULKARNI, R.R., PARREIRA, V.R., SHARIF, S. and PRESCOTT, J.F. (2007) Immunisation of broiler chickens against Clostridium perfringens-induced necrotic enteritis. Clinical and Vaccine Immunology 14: 1070-1077.
LANGHOUT, D.J., SCHUTTE, J.B., DE JONG, J., SLOETJES, H., VERSTEGEN, M.W.A. and TAMMINGA, S. (2000) Effect of viscosity on digestion of nutrients in conventional and germ-free chicks. British Journal of Nutrition 83: 533-540.
LOVLAND, A. and KALDHUSDAL, M. (2001) Severely impaired production performance in broiler flocks with high incidence of Clostridium perfringens-associated hepatitis. Avian Pathology 30: 73-81.
MANSSON, I. and OLHAGEN, B. (1967) Intestinal Clostridium perfringens in arthritis and parakeratosis induced by dietary factors. Experimental studies in pigs. Bulletin de l'Office International des Epizooties 61: 1319-1327.
MARTIN, T.G. and SMYTH, J.A. (2010) The ability of disease and non-disease producing strains of Clostridium perfringens from chickens to adhere to extracellular matrix molecules and Caco-2 cells. Anaerobe 16: 533-539.
MCCLANE, B.A. (1997) Clostridium perfringens, in: DOYLE, M.P., BEUCHAT, L.R. & MONTVILLE, T.J. (Eds) Food Microbiology: Fundamentals and Frontiers, pp. 305-326 (Washington, DC, ASM Press).
MCDEVITT, R.M., BROOKER, J.D., ACAMOVIC, T. and SPARKS, N.H.C. (2006) Necrotic enteritis; a continuing challenge for the poultry industry. World's Poultry Science Journal 62: 221-247.
MCREYNOLDS, J.L., BYRD, J.A., ANDERSON, R.C., MOORE, R.W., EDRINGTON, T.S., GENOVESE, K.J., POOLE, T.L., KUBENA, L.F. and NISBET, D.J. (2004) Evaluation of immunosuppressants and dietary mechanisms in an experimental disease model for necrotic enteritis. Poultry Science 83: 1984-1952.
MITSCH, P., ZITTERL-EGLSEER, K., KOHLER, B., GABLER, C., LOSA, R. and ZIMPERNIK, I. (2004) The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poultry Science 83: 669-675.
NAIRAN, M.E. and BAMFORD, V.W. (1967) Necrotic enteritis of broiler chickens in Western Australia. Australian Veterinary Journal 43: 49-54.
NAUERBY, B., PEDERSEN, K. and MADSEN, M. (2003) Analysis by pulsed field gel electrophoresis of the genetic diversity among Clostridium perfringens isolates from chickens. Veterinary Microbiology 94: 257-266.
NORTON, R.A., HOPKINS, B.A., SKEELES, J.K., BEASLEY, J.N. and KREEGER, J.M. (1992) High mortality of domestic turkeys associated with Ascaridia dissimilis. Avian Diseases 36: 469-473.
OLKOWSKI, A.A., WOJNAROWICZ, C., CHIRINO-TREJO, M. and DREW, M.D. (2006) Responses of broiler chickens orally challenged with Clostridium perfringens isolated from field cases of necrotic enteritis. Research in Veterinary Science 81: 99-108.
PALLIYEGURU, M.W.C.D. and ROSE, S.P. (2009) The pathology and proposed pathogenesis of sub-clinical necrotic enteritis spontaneous disease model simulating the conditions in the broiler industry. Book of abstracts XVI World Veterinary Poultry Association Congress, Marrakech, Morocco, pp.180.
PALLIYEGURU, M.W.C.D., ROSE, S.P. and MACKENZIE, A.M. (2010) Effect of dietary protein concentrates on the incidence of sub-clinical necrotic enteritis and growth performance of broiler chickens. Poultry Science 89: 34-43.
PALLIYEGURU, M.W.C.D., ROSE, S.P. and MACKENZIE, A.M. (2011) Effect of trypsin inhibitor activity in soya bean on the growth performance, protein digestibility and incidence of sub-clinical necrotic enteritis in broiler chicken flocks. British Poultry Science 52: 359-367.
PARK, S.S., LILLEHOJ, H.S., ALLEN, P.C., PARK, D.W., FITZCOY, S., BAUTISTA, D.A. and LILLEHOJ, E.P. (2008) Immunopathology and cytokine responses in broiler chickens coinfected with Eimeria maxima and Clostridium perfringens with the use of an animal model of necrotic enteritis. Avian Diseases 52: 14-22.
PEDERSEN, K., BJERRUM, L. HEUER, O.E. WONG, D.M.A.L.F. and NAUERBY, B. (2008) Reproducible infection model for Clostridium perfringens in broiler chickens. Avian Diseases 52: 34-39.
QUINN, P.J., CARTER, M.E., MARKEY, B.K. and CARTER, G.R. (1994) Clostridium species, in: Clinical Veterinary Microbiology, pp. 191-208 (London, Wolfe Publishing).
QUINN, P.J., MARKEY, B.K., CARTER, M.E., DONNELLY, W.J. and LEONARD, F.C. (2002) Veterinary Microbiology and Microbial diseases, pp. 85-95 (Oxford, Blackwell Science Ltd).
RAO, B.G.V.N. and NIGAM, S.S. (1970) The in vitro antimicrobial efficiency of essential oils. Indian Journal of Medical Research 58: 627-633.
SCHRADER, J., BROUSSARD, C., HANSEN, J., DIERKS, L., OETTING, A. and PETERSEN, G. (2008) Association of Clostridium perfringens type A alpha-toxin with lesions of necrotic enteritis evaluated by monoclonal antibody test strips and immunohistochemistry. Proceedings of World's Poultry Congress XXIII Brisbane, Australia, pp. 14-17.
SHANE, S.M., GYIMAH, J.E., HARRINGTON, K.S. and SNIDER, T.G. (1985) Aetiology and pathogenesis of necrotic enteritis. Veterinary Research Communications 9: 269-287.
SHIVARAMAIAH, S., WOLFENDEN, R.E., BARTA, J.R., MORGAN, M.J., WOLFENDEN, A.D., HARGIS, B.M. and TÉLLEZ, G. (2011) The role of an early Salmonella Typhimurium infection as a predisposing factor for necrotic enteritis in a laboratory challenge model. Avian Diseases 55: 319-323.
SMITH, D.B., RODDICK, J.G. and JONES. J.L. (1996) Potato glycoalkaloids: some unanswered questions. Trends in Food Science and Technology 7: 126-131.
SMITH, E.A. and MACFARLANE, G.T. (1998) Enumeration of amino acid fermenting bacteria in the human large intestine: effect of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiology Ecology 25: 355-368.
STEVENS, D.L. and BRYANT, A.E. (2002) The role of Clostridial toxins in the pathogenesis of gas gangrene. Clinical Infectious Diseases 35: S93-S100.
STEVENS, D.L. and ROOD, J.I. (2006) Histotoxic Clostridia, in: FISCHETTI, E.A. (Ed.) Gram-Positive Pathogens, 2nd ed., pp. 715-725 (Washington D.C, ASM press).
UNTAWALE, G.G., PIETRASZEK, A. and MCGINNIS, J. (1978) Effect of diet on adhesion and invasion of microflora in the intestinal mucosa of chicks. Proceedings of the Society for Experimental Biology and Medicine 159: 276-280.
VAHOUNY, G.V. and CASSIDY, M.M. (1986) Dietary fibre and intestinal adaptation, in: VAHOUNY, G.V. & DRITCHEVSKY, D. (Eds) Dietary Fibre: Basic and Clinical Aspects, pp. 181-209 (New York, Plenum Press).
VAN DIJK, J.E., HUISMAN, J. and KONINKX, J.F.J.G. (2002) Structural and functional aspects of a healthy gastrointestinal tract, in: BLOK, M.C., VAHL, H.A., DE LANGE, L., VAN DE BRAAK, A.E., HEMKE, G. & HESSING, M. (Eds) Nutrition and Health of the Gastrointestinal tract, pp. 71-96. (Wageningen, Wageningen Academic Publishers).
WAGES, D.P. and OPENGART, K. (2003) Necrotic Enteritis, in: SAIF, Y.M. (Ed.) Diseases of Poultry, 11th ed., pp. 781-785 (Iowa, Iowa state press).
WIDYARATNE, G.P. (2012) The role of protein and amino acid nutrition in controlling clostridium perfringens in the gastrointestinal tract of broiler chickens. Ph.D. Thesis, University of Saskatchewan.
WILLIAMS, R.B. (2005) Review Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathology 34: 159-180.
WILLIAMS, R.B., MARSHALL, R.N., LA RAGIONE, R.M. and CATCHPOLE, J. (2003) A new method for the experimental production of necrotic enteritis and its use for studies on the relationships between necrotic enteritis, coccidiosis and anticoccidial vaccination of chickens. Parasitology Research 90: 19-26.
YITBAREK, A., ECHEVERRY, H., BRADY, J., ERNANDEZ-DORIA, J., CAMELO-JAIMES, G., SHARIF, S., GUENTER, W., HOUSE, J.D. and RODRIGUEZ-LECOMPTE, J.C. (2012) Innate immune response to yeast-derived carbohydrates in broiler chickens fed organic diets and challenged with Clostridium perfringens. Poultry Science 91: 1105-1112.
ZENTEK, J., VAN DER STEEN, ROHDE, J. and AMTSBERG, G. (1998) Dietary effects on the occurrence and enterotoxin production of Clostridium perfringens in the canine gastrointestinal tract. Journal of Animal Physiology 80: 250-252.

Keywords

Sub-clinical necrotic enteritis: its aetiology and predisposing factors in commercial broiler production

  • M.W.C.D. PALLIYEGURU (a1) (a2) and S.P. ROSE (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed