Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T20:48:56.343Z Has data issue: false hasContentIssue false

Function and nutritional roles of the avian caeca: a review

Published online by Cambridge University Press:  28 June 2013

B. SVIHUS*
Affiliation:
Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
M. CHOCT
Affiliation:
Poultry Cooperative Research Centre, PO Box U242, University of New England, Armidale, NSW 2351, Australia
H.L. CLASSEN
Affiliation:
Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
*
Corresponding author: birger.svihus@umb.no
Get access

Abstract

The role of the avian caeca in the maintenance of gut health, fermentation of undigested nutrients, re-cycling of nitrogen from urine, and modulation of the gut microflora is not well understood. Thus, this review details the function of the avian caeca from anatomical, physiological, microbial and nutritional points of view in the context of poultry production. Due to anatomical and physiological adaptations, only small and/or soluble particles will be refluxed into the caeca together with urine and digestive fluids. Here, salts and water will be reabsorbed, and uric acid and carbohydrates will be fermented by the abundant microflora to ammonia and volatile fatty acids. Thus, the caeca may play a role for the nutritional status of the bird, although the quantitative significance for high-yielding domesticated poultry remains to be elucidated.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AKESTER, A.R., ANDERSON, R.S., HILL, K.H. and OSBALDISTON, G.W. (1967) A radiographic study of urine flow in the domestic fowl. British Poultry Science 8: 209-212.CrossRefGoogle ScholarPubMed
AMERAH, A.M., RAVINDRAN, V. and LENTLE, R.G. (2009) Influence of wheat hardness and xylanase supplementation on the performance, energy utilisation, digestive tract development and digesta parameters of broiler starters. Animal Production Science 49: 71-78.CrossRefGoogle Scholar
ANNISON, E.F., HILL, K.J. and KENWORTHY, R. (1968) Volatile fatty acids in the digestive tract of the fowl. British Journal of Nutrition 22: 207-216.CrossRefGoogle ScholarPubMed
APAJALAHTI, J., RINTTILÄ, T. and KETTUNEN, A. (2012) Does the composition of intestinal microbiota determine or reflect feed conversion efficiency? Proceedings of the 23rd Australian Poultry Science Symposium, Sydney, pp. 32-39.Google Scholar
BARNES, E.M., MEAD, G.C., BARNUM, D.A. and HARRY, E.G. (1972) The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. British Poultry Science 13: 311-326.CrossRefGoogle Scholar
BAURHOO, B., PHILLIP, L. and RUIZ-FERIA, C.A. (2007) Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poultry Science 86: 1070-1078.CrossRefGoogle ScholarPubMed
BEDFORD, M.R. and COWIESON, A.J. (2012) Exogenous enzymes and their effects on intestinal microbiology. Animal Feed Science and Technology 173: 76-85.CrossRefGoogle Scholar
BIGGS, P. and PARSONS, C.M. (2007) The effects of several oligosaccharides on true amino acid digestibility and true metabolizable energy in cecectomized and conventional roosters. Poultry Science 86: 1161-1165.CrossRefGoogle ScholarPubMed
BJERRUM, L., ENGBERG, R.M., LESER, T.D., JENSEN, B.B., FINSTER, K. and PEDERSEN K., (2006) Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Science 85: 1151-1164.CrossRefGoogle ScholarPubMed
BJÖRNHAG, G. (1989) Transport of water and food particles through the avian ceca and colon. The Journal of Experimental Zoology Suppl. 3: 32-37.CrossRefGoogle ScholarPubMed
BJÖRNHAG, G. and SPERBER, I. (1977) Transport of various food components through the digestive tract of turkeys, geese and guinea fowl. Swedish Journal of Agricultural Research 7: 57-66.Google Scholar
BRAUN, E.J. and CAMPBELL, C.E. (1989) Uric acid decomposition in the lower gastrointestinal tract. The Journal of Experimental Zoology Suppl. 3: 70-74.CrossRefGoogle ScholarPubMed
CAMPBELL, G.L., CLASSEN, H.L. and BALLANCE, G.M. (1986) Gamma irradiation treatment of cereal grains for chick diets. Journal of Nutrition 116: 560-569.CrossRefGoogle ScholarPubMed
CARRÉ, B., GOMEZ, J. and CHAGNEAU, A.M. (1995) Contribution of oligosaccharide and polysaccharide digestion, and excreta losses of lactic acid and short chain fatty acids, to dietary metabolisable energy values in broiler chickens and adult cockerels. British Poultry Science 36: 611-629.CrossRefGoogle ScholarPubMed
CHAPLIN, S.B. (1989) Effect of cecectomy on water and nutrient absorption in birds. The Journal of Experimental Zoology Suppl. 3: 81-86.CrossRefGoogle Scholar
CHOCT, M., ANNISON, G. and TRIMBLE, R.P. (1992) Soluble wheat pentosans exhibit different antinutritive activities in intact and cecectomized broiler chickens. Journal of Nutrition 122: 2457-2465.CrossRefGoogle ScholarPubMed
CHOCT, M., HUGHES, R.J., WANG, J., BEDFORD, M.R., MORGAN, A.J. and ANNISON, G. (1996) Increased small intestinal fermentation is partly responsible for the antinutritive activity of non-starch polysaccharides in chickens. British Poultry Science 37: 609-621.CrossRefGoogle ScholarPubMed
CHOCT, M., HUGHES, R.J. and BEDFORD, M.R. (1999) Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. British Poultry Science 40: 419-422.CrossRefGoogle ScholarPubMed
CLARKE, P.L. (1978) The structure of the ileo-caeco-colic junction of the domestic fowl (Gallus gallus L). British Poultry Science 19: 595-600.CrossRefGoogle ScholarPubMed
CLENCH, M.H. (1999) The avian cecum: update and motility review. The Journal of Experimental Zoology 283: 441-447.3.0.CO;2-8>CrossRefGoogle Scholar
CLENCH, M.H. and MATHIAS, J.R. (1995) The avian cecum: A review. Wilson Bulletin 107: 93-121.Google Scholar
COURTIN, C.M., SWENNEN, K., BROEKAERT, W.M., SWENNEN, Q., BUYSE, J., DECUYPERE, E., MICHIELS, C.W., DE KETELAERE, B. and DELCOUR, J.A. (2008) Effects of dietary inclusion of xylooligosaccharides, arabinoxylooligosaccharides and soluble arabinoxylan on the microbial composition of caecal contents of chickens. Journal of the Science of Food and Agriculture 88: 2517-2522.CrossRefGoogle Scholar
DANTZER, V. (1989) Ultrastructural differences between the two major components of chicken ceca. The Journal of Experimental Zoology Suppl. 3: 21-31.CrossRefGoogle ScholarPubMed
DENSTADLI, V., WESTERENG, B., BINIYAM, H.G., BALLANCE, S., KNUTSEN, S.H. and SVIHUS, B. (2010) Effects of structure and xylanase treatment of brewers' spent grain on performance and nutrient availability in broiler chickens. British Poultry Science 51: 419-426.CrossRefGoogle ScholarPubMed
DUKE, G.E. (1986) Alimentary canal: secretion and digestion, special digestive functions, and absorption, in: STURKIE, P.D. (Ed.) Avian Physiology, pp. 289-302 (New York, Springer-Verlag)Google Scholar
DUKE, G.E. (1989) Relationship of cecal and colonic motility to diet, habitat, and cecal anatomy in several avian species. The Journal of Experimental Zoology Suppl. 3: 38-47.CrossRefGoogle ScholarPubMed
DUKE, G.E., ECCLESTON, E., KIRKWOOD, S., LOUIS, C.F. and BEDBURY, H.P. (1984) Cellulose digestion by domestic turkeys fed low or high fiber diets. Journal of Nutrition 114: 95-102.CrossRefGoogle ScholarPubMed
DUKE, G.E., EVANSON, O.E. and HUBERTY, B.J. (1980) Electrical potential changes and contractile activity of the distal cecum of turkeys. Poultry Science 59: 1925-1934.CrossRefGoogle ScholarPubMed
DUNKLEY, K.D., CALLAWAY, T.R., CHALOVA, V.I., MCREYNOLDS, J.L., HUME, M.E., DUNKLEY, C.S., KUBENA, L.F., NISBET, D.J. and RICKE, S.C. (2009) Foodborne Salmonella ecology in the avian gastrointestinal tract. Anaerobe 15: 26-35.CrossRefGoogle ScholarPubMed
FENNA, L. and BOAG, D.A. (1974) Filling and emptying of the galliform caecum. Canadian Journal of Zoology 52: 537-540.CrossRefGoogle ScholarPubMed
FERRER, R., PLANAS, J.M., DURFORT, M. and MORETO, M. (1991) Morphological study of the caecal epithelium of the chicken (Gallus gallus domesticus L.). British Poultry Science 32: 679-691.CrossRefGoogle ScholarPubMed
FISCHER, E.N. (2003) . Interrelationship of diet fibre and endoxylanase with bacteria in the chicken gut. Ph.D. thesis, University of Saskatchewan, Saskatoon, Canada.Google Scholar
GASAWAY, W.C. (1976) Cellulose digestion and metabolism by captive Rock Ptarmigan. Comparative Biochemistry and Physiology 54A: 179-182.CrossRefGoogle Scholar
GRACIA, M.I., ARANIBAR, M.J., LAZARO, R., MEDEL, P. and MATEOS, G.G. (2003) α-Amylase supplementation of broiler diets based on corn. Poultry Science 82: 436-442.CrossRefGoogle ScholarPubMed
GUTIÉRREZ DEL ÁLAMO, A., PÉREZ DE AYALA, P., DEN HARTOG, L.A., VERSTEGEN, M.W.A. and VILLAMIDE, M.J. (2009) Wheat starch digestion rate in broiler chickens is affected by cultivar but not by wheat crop nitrogen fertilisation British Poultry Science 50: 341-349.CrossRefGoogle Scholar
HETLAND, H. and SVIHUS, B. (2007) Inclusion of dust bathing materials affects nutrient digestion and gut physiology of layers. Journal of Applied Poultry Research 16: 22-26.CrossRefGoogle Scholar
HETLAND, H., SVIHUS, B. and OLAISEN, V. (2002) Effect of feeding whole cereals on performance, starch digestibility and duodenal particle size distribution in broiler chickens. British Poultry Science 43: 416-423.CrossRefGoogle ScholarPubMed
HILL, K.J. (1971) The structure of the alimentary tract, in: BELL, D.J. & FREEMAN, B.M. (Eds) Physiology and biochemistry of the domestic fowl, Vol. 1, pp. 1-23 (London, Academic press).Google Scholar
Jr.HINTON, A., BUHR, R.J. and INGRAM, K.D. (2000) Physical, chemical, and microbiological changes in the ceca of broiler chickens subjected to incremental feed withdrawal. Poultry Science 79: 483-488.CrossRefGoogle ScholarPubMed
JAMROZ, D., JAKOBSEN, K., KNUDSEN, K.E.B., WILICZKIEWICZ, A. and ORDA, J. (2002) Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comparative Biochemistry and Physiology 131A: 657-668.CrossRefGoogle Scholar
JANSSEN, P.W.M., LENTLE, R.G., HULLS, C., RAVINDRAN, V. and AMERAH, A.M. (2009) Spatiotemporal mapping of the motility of the isolated chicken caecum. Journal of Comparative Physiology B 179: 593-604.CrossRefGoogle ScholarPubMed
JORGENSEN, H., ZHAO, X.-Q., KNUDSEN, K.E.B. and EGGUM, B.O. (1996) The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. British Journal of Nutrition 15: 379-395.CrossRefGoogle Scholar
JOZEFIAK, D., RUTKOWSKI, A., JENSEN, B.B. and ENGBERG, R.M. (2006) The effect of β-glucanase supplementation of barley- and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. British Poultry Science 51: 546-557.CrossRefGoogle Scholar
JOZEFIAK, D., RUTKOWSKI, A. and MARTIN, S.A. (2004) Carbohydrate fermentation in the avian ceca: a review. Animal Feed Science and Technology 113: 1-15.CrossRefGoogle Scholar
JOZEFIAK, D., RUTKOWSKI, A., KACZMAREK, S., JENSEN, B.B., ENGBERG, R.M. and HOJBERG, O. (2010) Effect of β-glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. British Poultry Science 51: 546-557.CrossRefGoogle ScholarPubMed
JOZEFIAK, D., SIP, A., RAWSKI, M., RUTKOWSKI, A., KACMAREK, S., HOJBERG, O., JENSEN, B.B. and ENGBERG, R.M. (2011) Dietary divercin modifies gastrointestinal micobiota and improves growth performance in broiler chickens. British Poultry Science 52: 492-499.CrossRefGoogle Scholar
KARASAWA, Y. (1989) Ammonia production from uric acid, urea, and amino acids and its absorption from the ceca of the cockerel. The Journal of Experimental Zoology Suppl. 3: 75-80.CrossRefGoogle ScholarPubMed
KARASAWA, Y. and MAEDA, M. (1994) Role of caeca in the nitrogen nutrition of the chicken fed on a moderate protein diet or a low protein diet plus urea. British Poultry Science 35: 383-391.CrossRefGoogle ScholarPubMed
KARASAWA, Y. and MAEDA, M. (1992) Effect of colostomy on the utilisation of dietary nitrogen in the fowl fed on a low protein diet. British Poultry Science 33: 815-820.CrossRefGoogle ScholarPubMed
KARASAWA, Y. and MAEDA, M. (1995) Effect of colostomy on the occurrence of dietary (15N) urea in intestinal content, blood, urine and tissues in chickens fed a low protein diet plus urea. British Poultry Science 36: 87-95.CrossRefGoogle Scholar
KARASAWA, Y., OKAMOTO, M. and KAWAI, H. (1988) Ammonia production from uric acid and its absorption from the caecum of the cockerel. British Poultry Science 29: 119-124.CrossRefGoogle ScholarPubMed
KLASING, K.C. (2005) Poultry nutrition: A comparative approach. Journal of Applied Poultry Research 14: 426-436.CrossRefGoogle Scholar
LANGHOUT, D.J. and SCHUTTE, J.B. (1996) Nutritional implications of pectins in chicks in relation to esterification and origin of pectins. Poultry Science 75: 1236-1242.CrossRefGoogle ScholarPubMed
LANGHOUT, D.J., SCHUTTE, J.B., de JONG, J., SLOTJES, H., VERSTEGEN, M.W.A. and TAMMINGA, S. (2000) Effect of viscosity on digestion of nutrients in conventional and germ-free chicks. British Journal of Nutrition 83: 533-540.CrossRefGoogle ScholarPubMed
LAVERTY, G. and SKADHAUGE, E. (2008) Adaptive strategies for post-renal handling of urine in birds. Comparative Biochemistry and Physiology A149: 246-254.CrossRefGoogle Scholar
LERNER, J., SATTELMEYER, P. and RUSH, R. (1975) Kinetics of methionine influx into various regions of chicken intestine. Comparative Biochemistry and Physiology 50A: 113-120.CrossRefGoogle Scholar
LONGSTAFF, M.A., KNOX, A. and McNAB. J.M., (1988) Digestibility of pentose sugars and uronic acids and their effect on chick weight gain and caecal size. British Poultry Science 29: 379-393.CrossRefGoogle ScholarPubMed
LU, J., IDRIS, U., HARMON, B., HOFACRE, C., MAURER, J.J. and LEE, M.D. (2003) Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology 69: 6816–6824.CrossRefGoogle ScholarPubMed
MAISONNIER, S., GOMEZ, J., CHAGNEAU, A.M. and CARRÉ, B. (2001) Analysis of variability in nutrient digestibilities in broiler chickens. British Poultry Science 42: 70-76.CrossRefGoogle ScholarPubMed
MAROUNEK, M., SUCHORSKA, O. and SAVKA, O. (1999) Effect of substrate and feed antibiotics on in vitro production of volatile fatty acids and methane in caecal contents of chickens. Animal Feed Science and Technology 80: 223-230.CrossRefGoogle Scholar
MARRON, L., BEDFORD, M.R. and MCCRACKEN, K.J. (2001) The effects of adding xylanase, vitamin C and copper sulphate to wheat-based diets on broiler performance. British Poultry Science 42: 493-500.CrossRefGoogle ScholarPubMed
MEAD, G.C. (1989) Microbes of the avian cecum: Types present and substrates utilized. The Journal of Experimental Zoology Suppl. 3: 48-54.CrossRefGoogle ScholarPubMed
McNAB, J. (1972) The avian ceca: a review. World's Poultry Science Journal 29: 251-263.CrossRefGoogle Scholar
McLELLAND, J. (1989) Anatomy of the avian cecum. The Journal of Experimental Zoology Suppl. 3: 2-9.CrossRefGoogle ScholarPubMed
Jr.MORAN, E.T. (2006) Anatomy, microbes, and fiber: Small versus large intestine. Journal of Applied Poultry Research 15: 154-160.CrossRefGoogle Scholar
MORETÓ, M. and PLANAS, J.M. (1989) Sugar and amino acid transport properties of the chicken ceca. The Journal of Experimental Zoology Suppl. 3: 111-116.CrossRefGoogle ScholarPubMed
MORTENSEN, A. and TINDALL, A. (1981) On cecal synthesis and absorption of amino acids and their importance for nitrogen recycling in willow ptarmigan (Lagopus lagopus lagopus). Acta Physiologica Scandinavica 113: 465-469.CrossRefGoogle ScholarPubMed
OBST, B.S. and DIAMOND, J.M. (1989) Interspecific variation in sugar and amino acid transport by the avian cecum. The Journal of Experimental Zoology Suppl. 3: 117-126.CrossRefGoogle ScholarPubMed
PULLIAINEN, E. and TUNKKARI, P. (1983) Seasonal variation in the gut length of willow grouse (Lagopus lagopus) in Finnish Lapland. Annales Zoologici Fennici 20: 53-56.Google Scholar
RAVINDRAN, V., HEW, L.I., RAVINDRAN, G. and BRYDEN, W.L. (1999) A comparison of ileal digesta and excreta analysis for the determination of amino acid digestibility in food ingredients for poultry. British Poultry Science 40: 266-274.CrossRefGoogle ScholarPubMed
REDIG, P.T. (1989) The avian ceca: Obligate combustion chambers or facultative afterburners? – The conditioning influence of diet. The Journal of Experimental Zoology Suppl. 3: 66-69.CrossRefGoogle ScholarPubMed
REHMAN, H., BÖHM, J. and ZENTEK, J. (2007) Effects of differentially fermentable carbohydrates on the microbial fermentation profile of the gastrointestinal tract of broilers. Journal of Animal Physiology and Animal Nutrition 92: 471-480.CrossRefGoogle ScholarPubMed
RODRIGUEZ, M.L., REBOLÉ, A., VELASCO, S., ORTIZ, L.T., TREVINO, J. and ALZUETA, C. (2012) Wheat- and barley-based diets with or without additives influence broiler chicken performance, nutrient digestibility and intestinal microflora. Journal of the Science of Food and Agriculture 92: 184-190.CrossRefGoogle ScholarPubMed
ROUGIERE, N. and CARRÉ, B. (2010) Comparison of gastrointestinal transit times between chickens from D+ and D- genetic lines selected for divergent digestion efficiency. Animal 4: 1861-1872.CrossRefGoogle Scholar
SACRANIE, A., SVIHUS, B., DENSTADLI, V., MOEN, B., IJI, P.A. and CHOCT, M. (2012) The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poultry Science 91: 693-700.CrossRefGoogle ScholarPubMed
SIBBALD, I.R. (1987) estimation of bioavailable amino acids in feedingstuffs for poultry and pigs: A review with emphasis on balance experiments. Canadian Journal of Animal Science 67: 221-300.CrossRefGoogle Scholar
SON, J.H. and KARASAWA, Y. (2000) Effect of removal of caecal contents on nitrogen utilisation and nitrogen excretion in caecally ligated chickens fed on a low protein diet supplemented with urea. British Poultry Science 41: 69-71.CrossRefGoogle ScholarPubMed
SON, J.H., KARASAWA, Y. and NAHM, K.H. (2000) Effect of caecectomy on growth, moisture in excreta, gastrointestinal passage time and uric acid excretion in growing chicks. British Poultry Science 41: 72-74.CrossRefGoogle ScholarPubMed
SON, J.H., RAGLAND, D. and ADEOLA, O. (2002) Quantification of digesta flow into the caeca. British Poultry Science 43: 322-324.CrossRefGoogle ScholarPubMed
SORVARI, R., NAUKKARINEN, A. and SORVARI, T.E. (1977) Anal sucking-like movements in the chicken and chick embryo followed by the transportation of environmental material to the bursa of Fabricius, caeca and caecal tonsils. Poultry Science 56: 1426-1429.CrossRefGoogle Scholar
STRONG, T.R., REIMER, P.R. and BRAUN, E.J. (1989) . Avian cecal microanatomy: A morphometric comparison of two species. The Journal of Experimental Zoology Suppl. 3: 10-20.CrossRefGoogle ScholarPubMed
SVIHUS, B. (2011) The gizzard: Function, influence of diet structure, and effects on nutrient availability. World's Poultry Science Journal 67: 207-223.CrossRefGoogle Scholar
SVIHUS, B., JUVIK, E., HETLAND, H., KROGDAHL, and Å., (2004) Causes for improvement in nutritive value of broiler chicken diets with whole wheat instead of ground wheat. British Poultry Science 45: 55-60.CrossRefGoogle ScholarPubMed
TANIKAWA, T., SHOJI, N., SONOHARA, N., SAITO, S., SHIMURA, Y., UKUSHIMA, J. and INAMOTO, T. (2011) Aging transition of the bacterial community structure in the chick ceca. Poultry Science 90: 1004-1008.CrossRefGoogle ScholarPubMed
THOMAS, D.H. (1982) Salt and water excretion by birds: The lower intestine as an integrator of renal and intestinal excretion. Comparative Biochemistry and Physiology. 71A: 527-535.CrossRefGoogle ScholarPubMed
THOMAS, D.H. and SKADHAUGE, E. (1989) Water and electrolyte transport by the avian ceca. The Journal of Experimental Zoology Suppl. 3: 95-102.CrossRefGoogle ScholarPubMed
TOROK, V.A., OPHEL-KELLER, K., LOO, M. and HUGHES, R.J. (2008) Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Applied and Environmental Microbiology 74: 783-791.CrossRefGoogle ScholarPubMed
TOROK, V.A., ALLISON, G.E., PERCY, N.J., OPHEL-KELLER, K. and HUGHES, R.J. (2011) Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Applied and Environmental Microbiology 77: 3380-3390.CrossRefGoogle ScholarPubMed
VAN DER WIELEN, P.W.J.J., KEUZENKAMP, D.A., LIPMAN, L.J.A., van KNAPEN, F. and BIESTERVELD, S. (2002) Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microbial Ecology 44: 286-293.CrossRefGoogle ScholarPubMed
VERGARA, P., FERRANDO, C., JIMENEZ, M., FERNANDEZ, E. and GONALONS, E. (1989) Factors determining gastrointestinal transit time of several markers in the domestic fowl. Quarterly Journal of Experimental Physiology 74: 867-874.CrossRefGoogle ScholarPubMed
WARRISS, P.D., WILKINS, L.J., BROWN, S.N., PHILLIPS, A.J. and ALLEN, V. (2004) Defaecation and weight of the gastrointestinal tract contents after feed and water withdrawal in broilers. British Poultry Science 45: 61-66.CrossRefGoogle ScholarPubMed
WEURDING, R.E., VELDMAN, A., VEEN, W.A.G., VAN DER AAR, P.J. and VERSTEGEN, M.W.A. (2001) Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. Journal of Nutrition 131: 2329-2335.CrossRefGoogle ScholarPubMed
XU, Z.R., HU, C.H., XIA, M.S., ZHAN, X.A. and WANG, M.Q. (2003) Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science 82: 1030-1036.CrossRefGoogle ScholarPubMed
YU, B., TSAI, C.-C., HSU, J.-C. and CHIOU, P.W.-S. (1998) Effect of different sources of dietary fibre on growth performance, intestinal morphology and caecal carbohydrases of domestic geese. British Poultry Science 39: 560-567.CrossRefGoogle ScholarPubMed
ZIMONJA, O. and SVIHUS, B. (2009) Effects of processing of wheat or oats starch on physical pellet quality and nutritional value for broilers. Animal Feed Science and Technology 149: 287-297.CrossRefGoogle Scholar