Skip to main content Accessibility help

Spiral resonators for optimally efficient strongly coupled magnetic resonant systems

  • Olutola Jonah (a1), Arvind Merwaday (a1), Stavros V. Georgakopoulos (a1) and Manos M. Tentzeris (a2)


The wireless efficiency of the strongly coupled magnetic resonance (SCMR) method greatly depends on the Q-factors of the TX and RX resonators, which in turn are strongly dependent on the geometrical parameters of the resonators. This paper analytically derives the equations that can be used to design optimal spiral resonators for SCMR systems. In addition, our analysis illustrates that under certain conditions globally maximum efficiency can be achieved.


Corresponding author

Corresponding author: S. V. Georgakopoulos Email:


Hide All
[1]Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd ed., Wiley, New York, 2003, 65112.
[2]Nikitin, P.V.; Rao, K.V.S.; Lazar, S.: An overview of near field UHF RFID, in Proc. RFID IEEE Int. Conf., March 2007, 167–174.
[3]Vandevoorde, G.; Puers, R.: Wireless energy transfer for standalone systems: a comparison between low and high energy applicability. Sens. Actuators A: Phys., 92 (1–3) (2001), 305311.
[4]Balanis, C.A.: Antenna Theory: Analysis and Design, chapter 5, Wiley, New Jersey, 2005,.
[5]Mazlouman, S.J.; Mahanfar, A.; Kaminska, B.: Mid-range wireless energy transfer using inductive resonance for wireless sensors, in Proc. IEEE Int. Conf. on Computer Design, IEEE Press, Piscataway, NJ, USA, 2009, 517–522.
[6]Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljacic, M.: Wireless energy transfer via strongly coupled magnetic resonances. Science, 317 (2007), 8385.
[7]Kurs, A.; Karalis, A.; Moffatt, R.; Soljacic Marin, M.: Simultaneous midrange power transfer to multiple devices. Appl. Phys. Lett., 96 (2010), 044102.
[8]Karalis, A.; Joannopoulos, J.D.; Soljacic, M.: Efficient wireless non-radiative mid-range energy transfer. Ann. Phys., 323 (2008), 3448.
[9]Joannopoulos, D.; Karalis, A.; Soljacic, M.: Wireless non-radiative energy transfer. US Patent 20070222542, September 2007.
[10]Cook, N.P.; Meier, P.; Sieber, L.; Secall, M.; Widmer, H.: Wireless energy apparatus and method. US Patent 20080211320, September 2008.
[11]Karalis, A.; Kurs, A.; Moffat, R.; Joannopoulos, D.; Fisher, P.H.; Soljacic, M.: Wireless energy transfer. US Patent 20110193419A1, August 2011.
[12]Mohan, S.S.; Hershenson, M.M.; Boyd, S.P.; Lee, T.H.: Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits, 34 (10) (1999).
[13]Joannopoulos, D.; Karalis, A.; Soljacic, M.: Wireless energy transfer systems. US Patent 2010/0141042 A1, September 2010.
[14]Smith, G.: The proximity effect in systems of parallel conductors and electrically small multi-turn loop antennas. [Online]. Available: 736984.
[15]Jow, U.-M.; Ghovanloo, M.: Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans. Biomed. Circuits Syst., 1 (3) (2007), 193202.
[16]Klein, A.; Katz, N.: Strong coupling optimization with planar spiral resonators. Curr. Appl. Phys., 11 (5) (2011), 11881191, ISSN 1567-1739.
[17]Cannon, B.L.; Hoburg, J.F.: Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron., 24 (7) (2009), 1819, 1825.


Related content

Powered by UNSILO

Spiral resonators for optimally efficient strongly coupled magnetic resonant systems

  • Olutola Jonah (a1), Arvind Merwaday (a1), Stavros V. Georgakopoulos (a1) and Manos M. Tentzeris (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.