Skip to main content Accessibility help

A free-rotating ball-shaped transmitting coil with wireless power transfer system for robot joints

  • Yang Yang (a1), Wenjie Chen (a1), Liyu Dai (a1) and Rui Wang (a1)


Wireless power transmission (WPT) systems with moveable mechanical parts have been acquired more and more attention during the past decade. However, due to the moveable feature of transmitting coil and receiving coil, misalignment issue lead to extra power loss, decrease in efficiency, increase in control complexity, and unwanted performance degradation of the whole system. Moreover, it happened frequently than those traditional planar coils systems. The motivation for this paper is trying to have a deep understanding of quantitative relationship between ball-shaped coils mutual inductance and misalignment. Based upon that, engineers would know more detail of the coils position and mutual inductance. So, optimized design might be achieved. On considering that, this paper presents a WPT system with a ball-shaped coil for robot joints. A mutual inductance calculation based on filament method aimed at ball-shaped coil is proposed. Based on these, nine different ball-shaped coil solutions are calculated. Then, model with a minimized change rate of mutual inductance against the angular misalignment is chosen as the optimized design. Circuit analysis of the WPT system with the series–series resonant topology is conducted to choose a proper working frequency and load. Finally, an experimental platform is established. It demonstrates the feasibility of the proposed calculation method and the feasibility of the WPT prototype.


Corresponding author

Corresponding author: Y. Yang, Email:


Hide All
[1]Badr, B.M.; Robert, S.C.; Paul, L.; Delaney, K.R.; Nikolai, D.: Design of a wireless measurement system for use in wireless power transfer applications for implants. Wirel. Power Transf., 4 (1) (2017), 2132.
[2]Basar, M.R.; Ahmad, M.Y.; Cho, J.; Ibrahim, F.B.: An improved wearable resonant wireless power transfer system for biomedical capsule endoscope. IEEE Trans. Ind. Electron., (99) (2018), 11.
[3]Campi, T.; Cruciani, S.; Santis, V.D.; Maradei, F.; Feliziani, M.: Numerical characterization of the magnetic field in electric vehicles equipped with a WPT system. Wirel. Power Transf., 4 (2) (2017), 110.
[4]Zhang, C., Lin, D.; Hui, S.Y.R.: Ball-joint wireless power transfer systems[J]. IEEE Trans. Power Electron., (2017), 11.
[5]Barmada, S.; Dionigi, M.; Mezzanotte, P.; Tucci, M.: Design and experimental characterization of a combined WPT–PLC system. Wirel. Power Transf., 4 (2) (2017), 160170.
[6]Bocan, K.N.; Mickle, M.H.; Sejdic, E.: Simulating, modeling, and sensing variable tissues for wireless implantable medical devices. IEEE Trans. Microw. Theory Technol., (99) (2018), 110.
[7]Narayanamoorthi, R.; Juliet, A.V.; Chokkalingam, B.: Frequency splitting-based wireless power transfer and simultaneous propulsion generation to multiple micro-robots. IEEE Sen. J., 18 (13) (2018), 11.
[8]Madhja, A.; Nikoletseas, S.; Voudouris, A.A.: Mobility-aware, adaptive algorithms for wireless power transfer in ad hoc networks. 2018.
[9]Mohamed, A.A.S.; Berzoy, A.; Mohammed, O.A.: Experimental validation of comprehensive steady-state analytical model of bidirectional WPT system in EVs applications. IEEE Trans. Veh. Technol., 66 (7) (2017), 55845594.
[10]Zhang, Y.; Chen, K.; He, F.; Zhao, Z.; Lu, T.; Yuan, L.: Closed-form oriented modeling and analysis of wireless power transfer system with constant-voltage source and load. IEEE Trans. Power Electron., 31 (5) (2015), 34723481.
[11]Nie, Z.; Yang, Y.: A model independent scheme of adaptive focusing for wireless powering to in-body shifting medical device. IEEE Trans. Antennas Propag., 66 (3) (2018), 14971506.
[12]Kim, J.; Kim, D.H.; Kim, K.H.; Park, Y.J.: Free-positioning wireless charging system for hearing aids using a bowl-shaped transmitting coil, in 2014 IEEE Wireless Power Transfer Conf. (WPTC), 2014, 6063.
[13]Liu, X.; Zhang, F.; Hackworth, S.A.; Sclabassi, R.J.; Sun, M.: Wireless power transfer system design for implanted and worn devices, in 2009 IEEE Bioengineering Conf. Northeast., 2009, 12.
[14]Jinghui, M.; Song, Y.: Research on vehicle mobile wireless charging system based on linear variable parameter model. Electr. Meas. Technol., 41 (4) (2018), 1623.
[15]Liu, F.; Yang, Y.; Jiang, D.; Ruan, X.; Chen, X.: Modeling and optimization of magnetically coupled resonant wireless power transfer system with varying spatial scales. IEEE Trans. Power Electron., 32 (4) (2017), 32403250.
[16]Wu, D.H.; He, T.F.; Wang, X.H.; Sun, Q.S.: Analytical solutions for the self- and mutual inductances of arbitrary triangular coils with rectangular cross-section. IET Gener. Transm. Distrib., 12 (6) (2018), 14111416.
[17]Penalver, P.L.F.; Braga, E.D.S.; Alves, M.A.R.; Roesler, P.H.; Mologni, J.F.: Pseudo-analytical model for calculation of flat circular inductors with rectangular cross-section. Microelectron. J., 78 (2018), 4653.
[18]Babic, S.I.; Akyel, C.: New analytic-numerical solutions for the mutual inductance of two coaxial circular coils with rectangular cross section in air. IEEE Trans. Magn., 42 (6) (2006), 16611669.
[19]Babic, S.I.; Akyel, C.: An improvement in the calculation of the magnetic field for an arbitrary geometry coil with rectangular cross section. Int. J. Numer. Model. Electron. Netw. Devices Fields, 18 (6) (2010), 493504.
[20]Babic, S.I.; Akyel, C.: Improvement in calculation of the self- and mutual inductance of thin-wall solenoids and disk coils. IEEE Trans. Magn., 36 (4) (2000), 19701975.
[21]Kim, K.B.; Levi, E.; Zabar, Z.; Birenbaum, L.: Mutual inductance of non-coaxial circular coils with constant current density. IEEE Trans. Magn., 33 (5) (2002), 43034309.
[22]Akyel, C.; Babic, S.; Kincic, S.: New and fast procedures for calculating the mutual inductance of coaxial circular coils (circular coil-disk coil). IEEE Trans. Magn., 38 (5) (2002), 23672369.
[23]Babic, S.I.; Salon, S.; Akyel, C.: The mutual inductance of two thin coaxial disk coils in air. IEEE Trans. Magn., 40 (2) (2004), 822825.
[24]Babic, S.I.; Akyel, C.: An improvement in the calculation of the self inductance of thin disk coils with air-core. Wseas Trans.circ.syst., 2004.
[25]Luo, Y.; Chen, B.: Improvement of self-inductance calculations for circular coils of rectangular cross section. IEEE Trans. Magn., 49 (3) (2013), 12491255.
[26]Jiao, S.; Liu, X.; Zeng, Z.: Intensive study of skin effect in eddy current testing with pancake coil. IEEE Trans. Magn., 53 (7) (2017), 18.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Wireless Power Transfer
  • ISSN: -
  • EISSN: 2052-8418
  • URL: /core/journals/wireless-power-transfer
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed