Skip to main content Accessibility help
×
Home

Electric vehicle wireless charging technology: a state-of-the-art review of magnetic coupling systems

  • Taylor M. Fisher (a1), Kathleen Blair Farley (a2), Yabiao Gao (a1), Hua Bai (a3) and Zion Tsz Ho Tse (a1)...

Abstract

Electric vehicles (EVs) are becoming more popular due to concerns about the environment and rising gasoline prices. However, the charging infrastructure is lacking, and most people can only charge their EVs at home if they remember to plug in their cars. Using the principles of magnetic inductance and magnetic resonance, wireless charging (WC) could help significantly with these infrastructure problems by making charging secure and convenient. WC systems also have the potential to provide dynamic charging, making long road trips with EVs feasible and eliminating range anxiety. In this paper, we review the companies available in the literature that have developed electric vehicle wireless charging systems, automobile manufacturers interested in such technology, and research from universities and laboratories on the topic. While the field is still very young, there are many promising technologies available today. Some systems have already been in use for years, recharging public transit buses at bus stops. Safety and regulations are also discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Electric vehicle wireless charging technology: a state-of-the-art review of magnetic coupling systems
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Electric vehicle wireless charging technology: a state-of-the-art review of magnetic coupling systems
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Electric vehicle wireless charging technology: a state-of-the-art review of magnetic coupling systems
      Available formats
      ×

Copyright

Corresponding author

Corresponding author: Z.T. Ho Tse Email: ziontse@uga.edu

References

Hide All
[1] Mur-Miranda, J.O. et al. : Wireless power transfer using weakly coupled magnetostatic resonators, in IEEE Energy Conversion Congress and Exposition, 2010, 4179–4186.
[2] Cheon, S.; Kim, Y.H.; Kang, S.Y.; Lee, M.L.; Lee, J.M.; Zyung, T.: Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances. IEEE Trans. Ind. Electron., 58 (2011), 29062914.
[3] Karalis, A.; Joannopoulos, J.D.; Soljačić, M.: Efficient wireless non-radiative mid-range energy transfer. Ann. Phys., 323 (2008), 3448.
[4] Imura, T.; Hori, Y.: Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula. IEEE Trans. Ind. Electron., 58 (2011), 47464752.
[5] Beh, T.C.; Imura, T.; Kato, M.; Hori, Y.: Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching, in IEEE Int. Symp. on Industrial Electronics, 2010, 2011–2016.
[6] Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science, 317 (2007), 8386.
[7] Imura, T.; Okabe, H.; Uchida, T.; Hori, Y.: Study on open and short end helical antennas with capacitor in series of wireless power transfer using magnetic resonant couplings, in The 35th Annual Conf. IEEE on Industrial Electronics, 2009, 38483853.
[8] Lee, S.-H.; Lorenz, R.D.: Development and validation of model for 95%-efficiency 220-W wireless power transfer over a 30-cm air gap. IEEE Trans. Ind. Appl., 47 (2011), 24952504.
[9] Esteban, B.; Sid-Ahmed, M.; Kar, N.: A review of primary side power supply circuit topologies for wireless electric vehicle charging applications, In EV 2012 Vȁ, Montreal, Quebec, Canada, 2012.
[10] Jin, H.; Rim, C.T.: KAIST wireless electric vehicles – OLEV. SAE Int., 1 (2011), 110.
[11] Shapiro, L.: In Motion: Electric Cars Gaining in Popularity. Available: http://www.thelaurelofasheville.com/in-motion-electric-cars.html, July 2013.
[12] Wu, H.H.; Gilchrist, A.; Sealy, K.; Israelsen, P.; Muhs, J.: A review on inductive charging for electric vehicles, in 2011 IEEE Int. Electric Machines & Drives Conf. (IEMDC), 2011, 143–147.
[13] Miller, J.M.; Scudiere, M.B.; McKeever, J.W.; White, C.: Wireless power transfer, in Oak Ridge National Laboratory's Power Electronics Symp., 2011.
[14] Covic, G.; Boys, J.: Inductive Power Transfer Powering Our Future. Available: http://ceme.ece.illinois.edu/seminars/CEME910Covic.pdf, July 2013.
[15] Kesler, M.: Highly Resonant Wireless Power Transfer: Safe, Efficient, and over Distance [White Paper], 2013. Available: http://www.witricity.com/pdfs/highly-resonant-power-transfer-kesler-witricity-2013.pdf
[16]WiTricityCorp: WiT 3300 Electric Vehicle Charging Kit. Available: http://www.witricity.com/pages/ev-charging-system.html, July 2013.
[17] Joannopoulos, J.D.; Karalis, A.; Soljacic, M.: Wireless non-radiative energy transfer. 7 (2010), patent US 7741734B2. Assigned to Massachusetts University of Technology.
[18] Karalis, A.; Kurs, A.B.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.H.; Soljacic, M.: Wireless energy transfer. 7 (2010), Patent US 7825543B2. Assigned to Massachusetts University of Technology.
[19] Breitrose, C.: Gov. Patrick Sees the Bright Future for Technology Developed by Watertown's WiTricity, 2012. Available: http://watertown.patch.com/groups/arts-and-entertainment/p/gov-patrick-sees-the-bright-future-for-technology-dev0f8568efa7, July 2013.
[20] Lutterman, J.: US Department of Energy: Charging Your Plug-in Electric Vehicle at Home, 2013. Available: http://energy.gov/energysaver/articles/charging-your-plug-electric-vehicle-home, July 2013.
[21] Boys, J.C.; Covic, G.A.: IPT Fact Sheet Series: No. 1 – Basic Concepts. Available: http://www.qualcommhalo.com/images/downloads/IPT%20Fact%20Sheet%201%20-%20UoA%202012.pdf, July 2013.
[22]QualcommHalo: First Electric Vehicle Wireless Charging Trial Announced for London, 2011. Available: http://www.qualcomm.com/media/releases/2011/11/10/first-electric-vehicle-wireless-charging-trial-announced-london, July 2013.
[23]Conductix-Wampfler: Charging electric buses quickly and efficiently: bus stops fitted with modular components make “Charge & Go” simple to implement, 2013. Available: http://www.conductix.us/en/news/2013-05-29/charging-electric-buses-quickly-and-efficiently-bus-stops-fitted-modular-components-make-charge-go, July 2013.
[25]Primove. Available: http://primove.bombardier.com/, March 2013.
[26]World's first high power inductive charging station launched. Available: http://primove.bombardier.com/media/news/show/137/#137-world-s-first-high-power-inductive-charging-station-launched, March 2013.
[27] Tran, L.L.: (June). EVWireless. Available: http://www.evwireless.net/ 2013
[28]Momentum Dynamics. Available: http://www.momentumdynamics.com/, June 2013.
[29] Cobb, J.: Momentum Dynamics Promises Fast and Easy Wireless EV Charging, 2012. Available: http://www.hybridcars.com/momentum-dynamics-promises-fast-and-easy-wireless-ev-charging-47117/, July 2013.
[30] Jeremy McCool, S.M.; Sharma, A. K.; Okolski, C.: HEVO Power, 2014. Available: http://www.hevopower.com/
[31] Maxwell Fine, A.K.S. (ed.): HEVO Power Technology Summary. 2014.
[32] Manheim, Germany Primove E-Bus – 100% e-mobility on demanding city route. Bombardier, I., ed., 2013.
[33] Motavalli, J.WiTricity Developing Wireless Electric Car Charger.: Delphi and WiTricity Developing Wireless Electric Car Charger. The New York Times, 2010. Available: http://wheels.blogs.nytimes.com/2010/11/02/delphi-and-witricity-developing-wireless-electric-car-charger/
[34] Stewart, J.: Wireless highway charges electric cars as they go, 2012. Available: http://www.bbc.com/future/story/20120312-wireless-highway-to-charge-cars/1, July 2013.
[35]Plugless-Power: Smarter EV charging. Available: http://www.pluglesspower.com/, July 2013.
[36]AFP/Relaxnews: Wireless charging may be key to electric vehicle success, BMW and Nissan already developing technology. New York Daily News, 2012. Available: http://www.nydailynews.com/autos/wireless-charging-key-electric-vehicle-success-article-1.1228841
[37] Ingram, A.: Siemens Inductive Charging Testing Begins In Berlin With BMW. Green Car Reports, 2011. Available: http://www.greencarreports.com/news/1058200_siemens-inductive-charging-testing-begins-in-berlin-with-bmw
[38] Voelcker, J.: See Nissan's Wireless Charging With Automatic Parking Location. Green Car Reports, 2012. Available: http://www.greencarreports.com/news/1080113_see-nissans-wireless-charging-with-automatic-parking-location-video, July 2013.
[39] Quick, D.: Inductive charging for electric vehicles to be put to the test in real-world trial in Berlin, 2011. Available: http://www.gizmag.com/inductive-charging-real-world-test/20911/, July 2013.
[40] Foy, P.: Utah to deploy electric bus that needs no plug, 2011. Available: http://www.nbcnews.com/id/45438112/ns/technology_and_science-innovation/t/utah-deploy-electric-bus-needs-no-plug/#.UfXvtY21Fsk, July 2013.
[41] Scudiere, M.B.; Miller, J.M.: Wireless Charging System for Electric Vehicles, 2011. Available: http://www.ornl.gov/adm/partnerships/factsheets/11-G00236_ID2250_2637_2638_2639_2667.pdf, July 2013.
[42] Madawala, U.K.; Thrimawithana, D.J.: A bidirectional inductive power interface for electric vehicles in V2 G systems. IEEE Trans. Ind. Electron., 58 (2011), 47894796.
[43] Horiuchi, T.; Kawashima, K.: Study on planar antennas for wireless power transmission of electric vehicles. IEEJ Trans. Ind. Appl., 130 (2010), 13711377.
[44] Sato, F.; Morita, J.; Takura, T.; Sato, T.; Matsuki, H.: Research on highly efficient contactless power station system using meander coil for moving electric vehicle model. J. Magn. Soc. Japan, 36 (2012), 249252.
[45] Wu, H.H.; Gilchrist, A.; Sealy, K.D.; Bronson, D.: A high efficiency 5 kW inductive charger for EVs using dual side control. IEEE Trans. Ind. Inf., 8 (2012), 585595.
[46] Imura, T.; Okabe, H.; Hori, Y.: Basic experimental study on helical antennas of wireless power transfer for electric vehicles by using magnetic resonant couplings, in presented at the IEEE Vehicle Power & Propulsion Conf., 2009.
[47] Imura, T.; Okabe, H.; Uchida, T.; Hori, Y.: Wireless power transfer during displacement using electromagnetic coupling in resonance -magnetic-versus electric-type antennas. IEEJ Trans. Ind. Appl., 130 (2010), 7683.
[48] Beh, T.; Kato, M.; Imura, T.; Hori, Y.: Wireless power transfer system via magnetic resonant coupling at fixed resonance frequency. Power transfer system based on impedance matching. World Electr. Veh. J., 4 (2012), 744753.
[49] Zhen Ning, L.; Chinga, R.A.; Ryan, T.; Jenshan, L.: Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system. IEEE Trans. Ind. Electron., 56 (2009), 18011812.
[50] Pellegrino, G.; Armando, E.; Guglielmi, P.: An integral battery charger with power factor correction for electric scooter. IEEE Trans. Power Electron., 25 (2010), 751759.
[51] Wei, G.; Hua, B.; Szatmari-Voicu, G.; Taylor, A.; Patterson, J.; Kane, J.: A 10 kW 97%-efficiency LLC resonant DC/DC converter with wide range of output voltage for the battery chargers in Plug-in Hybrid Electric Vehicles, in 2012 IEEE Transportation Electrification Conf. and Expo (ITEC), 2012, 1–4.
[52] Chigira, M.; Nagatsuka, Y.; Kaneko, Y.; Abe, S.; Yasuda, T.; Suzuki, A.: Small-size light-weight transformer with new core structure for contactless electric vehicle power transfer system, in 2011 IEEE Energy Conversion Congress and Exposition (ECCE), 2011, 260266.
[53] Li, W.: High Efficiency Wireless Power Transmission at Low Frequency Using Permanent Magnetic Coupling. Master of Applied Science, The Faculty of Graduate Studies, The University of British Columbia, Vancouver, British Columbia, Canada, 2007.
[54] IEEE-Standard: Safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Standard, (2006), 01238.
[55] International-Commission: Guidelines for limiting exposure to time-varying electric magnetic and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys., 74 (1998), 494522.
[56]Title 47 of the Code of Federal Regulations. Commission, F. C., Ed., ed: GPO.gov.
[57] Hunter, A.G.; Wu, H.; Sealy, K.D.; Bronson, D.: A high efficiency 5 kW inductive charger for EVs using dual side control. IEEE Trans. Ind. Inf., 8 (2012), 585595.
[58] Onar, O.C.M.; John, M.; Campbell, S.L.; Coomer, C.; White, C.P.; Seiber, L.E.: A novel wireless power transfer for in-motion EV/PHEV charging, in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conf. and Exposition (APEC).

Keywords

Related content

Powered by UNSILO

Electric vehicle wireless charging technology: a state-of-the-art review of magnetic coupling systems

  • Taylor M. Fisher (a1), Kathleen Blair Farley (a2), Yabiao Gao (a1), Hua Bai (a3) and Zion Tsz Ho Tse (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.