Skip to main content Accessibility help
×
Home

Compact and efficient WPT systems using half-ring resonators (HRRs) for powering electronic devices

  • Hany A. Atallah (a1)

Abstract

This work presents a novel efficient and compact size coupled resonator system for wireless power transfer (WPT) based on compact half-ring resonators defected ground structure (HRRs-DGS). The proposed design is capable of supplying low power electronic devices. The suggested system is based on coupled resonators of DGS. An HRR-DGS band-stop filter is designed and proposed, and when two HRRs-DGS are coupled back-to-back, it transfers to a band-pass filter leading to a compact and highly efficient WPT system working at 3.4 GHz. The measured efficiency of the proposed coupled HRRs-DGS system is around 94% at a transmission distance of 12 mm which is filled with foam for stable measurements. The proposed design is suitable for charging electronic devices such as wireless sensor nodes at 3.4 GHz. Simulation and experimental results have shown acceptable agreement.

Copyright

Corresponding author

Corresponding author: Hany A. Atallah Email: h.atallah@eng.svu.edu.eg

References

Hide All
[1]Choadhary, V.; Singh, S.P.; Kumar, V.; Prashar, D.: Wireless power transmission: an innovative idea. Res. India Publ., 1 (3) (2011), 203210.
[2]Das Barman, S.; Reza, A.W.; Kumar, N.; Karim, M.E.; Munir, A.B.: Wireless powering by magnetic resonant coupling: recent trends in wireless power transfer system and its applications. Renew. Sustain. Energy Rev, 51 (2015), 15251552.
[3]Abidin, B.M.Z.; Khalifa, O.O.; Elsheikh, E.M.A.; Abdulla, A.H.: Wireless energy harvesting for portable devices using split ring resonator, in Int. Conf. Comput. Control. Networking, Electron. Embed. Syst. Eng., Khartoum, 2015, 362367.
[4]Kibret, B.; Teshome, A.K.; Lai, D.T.H.: Analysis of the human body as an antenna for wireless implant communication. IEEE Trans. Antennas Propag., 64 (4) (2016), 14661476.
[5]Hirayama, H.; Amano, T.; Kikuma, N.; Sakakibara, K.: An investigation on self-resonant and capacitor-loaded helical antennas for coupled-resonant wireless power transfer. IEICE Trans. Commun., 96 (10) (2013), 24312439.
[6]Jolani, F.; Yu, Y.; Chen, Z.: Enhanced planar wireless power transfer using strongly coupled magnetic resonance. Electron. Lett., 51 (2) (2015), 173175.
[7]Hekal, S.; Abdel-Rahman, A.B.; Jia, H.; Allam, A.; Barakat, A.; Pokharel, R.K.: A novel technique for compact size wireless power transfer applications using defected ground structures. IEEE Trans. Microw. Theory Tech., 65 (2) (2017), 591599.
[8]Jolani, F.; Yu, Y.; Chen, Z.: A planar magnetically coupled resonant wireless power transfer system using printed spiral coils. IEEE Antennas Wireless Propag. Lett., 13 (2014), 16481651.
[9]Jonah, O.; Merwaday, A.; Georgakopoulos, S.V.; Tentzeris, M.M.: Spiral resonators for optimally efficient strongly coupled magnetic resonant systems. Wireless Power Transf. J., 1 (1), (2014), 2126.
[10]Liou, C.Y.; Lin, X.S.; Tai, C.H.; Mao, S.G.: Microwave near-field capacitive coupling system for wireless powering applications, in IEEE Wireless Power Transfer Conference, Jeju, 2014, 56–59.
[11]Hekal, S.; Abdel-Rahman, A.B.: New compact design for short range wireless power transmission at 1 GHz using H-slot resonators, in 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, 2015, 15.
[12]Donelli, M.; Rocca, P.; Viani, F: Design of a WPT system for the powering of wireless sensor nodes: theoretical guidelines and experimental validation. Wireless Power Transf. J., 3 (1) (2016), 1523.
[13]Lie, D.; Nukala, B.T.; Tsay, J.; Lopez, J.; Nguyen, T.Q.: Wireless power transfer (WPT) using strongly coupled magnetic resonance (SCMR) at 5.8 GHz for biosensors applications: a feasibility study by electromagnetic (EM) simulations. Int. J. Biosens. Bioelectron., 2 (2) (2017), 6571.
[14]Atallah, H.A.; Yoshitomi, K.; Abdel-Rahman, A.B.; Pokharel, R.K.: Design of compact frequency agile filter-antenna using reconfigurable ring resonator bandpass filter for future cognitive radios. Int. J. Microw. Wirel. Technol., 10 (4) (2018), 487496.
[15]Hong, J.-S.; Lancaster, M.J.: Microstrip Filters for RF/Microwave Applications Theory Analysis and Design, 1st ed., John Wiley & Sons, New York, 2001.
[16]Zhang, Y.; Zhao, Z.; Chen, K.: Frequency splitting analysis of magnetically-coupled resonant wireless power transfer, in 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013, 22272232.
[17]Atallah, H.A.: Design of compact high efficient WPT system utilizing half-ring resonators (HRRs) DGS for short range applications, in 2018 35th National Radio Science Conference (NRSC), Cairo, Egypt, March 2018, 6368.
[18]Sharaf, R.; Hekal, S.; El-Hameed, A.A.; Abdel-Rahman, A.B.; Pokharel, R.K.: A new compact wireless power transfer system using C-shaped printed resonators, in IEEE Int. Conf. Electron. Circuits Syst. ICECS 2016 2016, 321323.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed