Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-21T02:20:28.946Z Has data issue: false hasContentIssue false

Effect of Atrazine, Bromacil, and Diquat on C14O2-Fixation in Corn, Cotton, and Soybeans

Published online by Cambridge University Press:  12 June 2017

R. W. Couch
Affiliation:
Auburn University, Auburn, Alabama Athens College, Athens, Alabama
D. E. Davis
Affiliation:
Agricultural Experiment Station, Auburn University, Auburn, Alabama
Get access

Abstract

Two-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine), 5-bromo-3-sec-butyl-6-methyluracil (bromacil), and 6,7-dihydrodipyrido-(1,2-a:2’,1′-c)-pyrazidiinium salt (diquat) significantly inhibited photosynthetic C14O2-fixation to varying degrees in corn (Zea mays L., var. Dixie 18), cotton (Gossypium hirsutum L., var. Deltapine), and soybeans (Glycine max (L.) Merr., var. Lee). Atrazine treatments of 10 ppm overloaded the protective mechanisms in corn and cotton. Both 1 and 10 ppm of atrazine reduced C14O2-fixation to less than 5% of controls in soybeans, a sensitive species. One ppm of bromacil and of diquat reduced C14O2-fixation in all three crops, but diquat was less inhibitory than either bromacil or atrazine. Except for diquat on corn, herbicides had no significant effect on C14O2-fixation in the dark. Treatments in which photosynthetic C14O2-fixation was 5% or more of controls had little effect on the kinds or relative amounts of C14-labeled compounds produced. Only the total amount fixed was reduced. Treatments, in which photosynthetic C14O2-fixation was less than 5% of controls, caused a significant reduction in the relative amounts of sucrose and alanine produced; however, the relative amounts of malic, aspartic, and glutamic acids increased.

Type
Research Article
Copyright
Copyright © 1966 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ashton, F. M. 1965. Physiological, biochemical, and structural modifications of plants induced by atrazine and monuron. Proc. SWC 18:596602.Google Scholar
2. Ashton, F. M., Zweig, G., and Mason, G. S. 1960. The effect of certain amino triazines on C14O2 fixation in the red kidney beans. Weeds 8:448451.CrossRefGoogle Scholar
3. Bassham, J. A. and Calvin, M. 1957. The Path of Carbon in Photosynthesis. Prentice-Hall, Inc., Englewood Cliffs, N. J. 104 p.Google Scholar
4. Block, R. J., Durrum, L. L., and Zweig, G. 1958. A Manual of Paper Chromatography and Paper Electrophoresis, 2nd ed. Academic Press, Inc., New York. 710 p.Google Scholar
5. Bucha, H. C., Cupsry, W. E., Harrod, J. E., Loux, H. M., and Ellis, L. M. 1962. Substituted uracil herbicides. Science 137:537538.CrossRefGoogle ScholarPubMed
6. Calderbank, A. 1960. Diquat: A new herbicide and desiccant. Agr. Vet. Chemicals 1:197.Google Scholar
7. Calderbank, A. 1964. Mode of action of the dipyridylium herbicides, diquat and paraquat. Proc. Brit. Weed Conf. 7:312320.Google Scholar
8. Castelfranco, P., Foy, C. L., and Deutsch, D. B. 1961. Non-enzymatic detoxification of 2-chloro-4,6-bis(ethylamino)-s-triazine (simazine) by extracts of Zea mays . Weeds 9:580591.CrossRefGoogle Scholar
9. Clayton, R. K. 1963. Photosynthesis: Primary physical and chemical processes. Ann. Rev. Plant Physiol. 14:159180.CrossRefGoogle Scholar
10. Davies, D. D., Giovanelli, J., and ApRees, T. 1964. Plant Biochemistry. F. A. Davis Co., Philadelphia. 454 p.Google Scholar
11. Davis, D. E., Roberts, D. R., and Funderburk, H. H. Jr. 1963. Radiochemical assay procedures for atrazine and atrazine degradation products. Proc. SWC 16:380386.Google Scholar
12. Davis, D. E., Gramlich, J. V., and Funderburk, H. H. Jr. 1965. Atrazine absorption and degradation by corn, cotton, and soybeans. Weeds 13:252255.CrossRefGoogle Scholar
13. Emerson, R. and Arnold, W. 1932. The photochemical reaction in photosynthesis. J. Gen. Physiol. 16:191205.CrossRefGoogle ScholarPubMed
14. Exer, B. 1961. Inhibition of the Hill-reaction by a herbicide. Weed Res. 1:233244.CrossRefGoogle Scholar
15. Foy, C. L. 1961. Accumulation of s-triazine herbicides in the lysigenous glands of cotton and its physiological significance. Abstracts WSA, p. 41 (Abstr.).Google Scholar
16. Funderburk, H. H. Jr. and Lawrence, J. M. 1964. Mode of action and metabolism of diquat and paraquat. Weeds 12:259264.CrossRefGoogle Scholar
17. Funderburk, H. H. Jr. and Carter, M. C. 1965. The effect of amitrole, atrazine, dichlobenil, and paraquat on the fixation and distribution of C14O2 in beans. Proc. SWC 18:607 (Abstr.).Google Scholar
18. Glover, J. 1956. Methods involving labeled atoms, p 325–374. In Modern Methods of Plant Analysis. Paech, K. and Tracey, M. V. (ed.). Springer-Verlag, Berlin.Google Scholar
19. Gysin, H. 1962. Triazine herbicides—Their chemistry, biological properties, and mode of action. Chem. and Ind. 31:13931400.Google Scholar
20. Hamilton, R. H. and Moreland, D. E. 1962. Simazine: Degradation by corn seedlings. Science 135:373374.CrossRefGoogle ScholarPubMed
21. Hilton, J. L., Manaco, T. J., Moreland, D. E., and Gentner, W. A. 1964. Mode of action of substituted uracil herbicides. Weeds 12:129131.CrossRefGoogle Scholar
22. Hoagland, D. R. and Arnon, N. I. 1950. The water culture method of growing plants without soil. Calif. Agr. Expt. Sta. Circ. 347.Google Scholar
23. Homer, R. F., Mees, G. C., and Tomlinson, T. C. 1960. Mode of action of dipyridyl quaternary salts as herbicides. J. Sci. Food Agr. 6:309315.CrossRefGoogle Scholar
24. Montgomery, M. and Freed, V. H. 1964. Metabolism of triazine herbicides by plants. J. Agr. Food Chem. 12:1114.CrossRefGoogle Scholar
25. Moreland, D. E. 1965. Discussion of the photochemical reaction and their properties. Proc. SWC 18:593 (Abstr.).Google Scholar
26. Moreland, D. E. and Hill, K. L. 1962. Interference of herbicides with the Hill reaction of isolated chloroplasts. Weeds 10:229236.CrossRefGoogle Scholar
27. Park, R. B. 1962. Advances in photosynthesis. J. Chem. Educ. 39:424435.CrossRefGoogle Scholar
28. Negi, N. S., Funderburk, H. H. Jr., and Davis, D. E. 1964. Metabolism of atrazine by susceptible and resistant plants. Weeds 12:5357.CrossRefGoogle Scholar
29. Roberts, D. R., Davis, D. E., and Funderburk, H. H. Jr. 1964. Preliminary report on the fate of atrazine in corn, cotton, and soybeans. Abstracts WSA, p. 7172 (Abstr.).Google Scholar
30. Sallach, H. J. and McGilvery, R. W. 1963. Intermediary Metabolism, parts 1 and 2. Gibson Medical Electronics, Middleton, Wisconsin.Google Scholar
31. Sauer, K. and Calvin, M. 1962. Absorption spectra of spinach quantasomes and bleaching of the pigments. Biochem. et Biophys. Acta 64:324339.CrossRefGoogle ScholarPubMed
32. Tollin, G. 1962. The primary process of photosynthesis: An interpretation of the Emerson effect and of the light-induced spectral changes at 7,000 Å. J. Theoret. Biol. 2:105116.CrossRefGoogle Scholar
33. Zweig, G. and Ashton, F. M. 1962. The effect of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) on distribution of 14C-compounds following 14CO2 fixation in excised red kidney bean leaves. J. Exptl. Botan. 13:511.CrossRefGoogle Scholar