Skip to main content Accessibility help
×
Home

Weed Control in Soybean (Glycine max) with Green Manure Crops

  • Gopal Krishnan (a1), David L. Holshouser (a1) and Scott J. Nissen (a1)

Abstract

Greenhouse and field experiments were initiated to evaluate rapeseed and mustard species as green manure crops for weed suppression. Under greenhouse conditions incorporating 20 g fresh wt leaf and stem tissue of rapeseed, two white mustards, and brown mustard into 450 g Sharpsburg, silty clay loam soil resulted in significant reductions in weed emergence, biomass, and height. Kochia, shepherd's-purse, and green foxtail emergences were reduced by all green manure crops. Redroot pigweed emergence was reduced by all green manure crops except brown mustard, and velvetleaf emergence was reduced by white mustards only. Kochia and shepherd's-purse fresh weights were reduced by all green manure crops, while redroot pigweed and velvetleaf fresh weights were reduced by brown mustard and white mustard var. Salvo. Green foxtail fresh weight was reduced by all green manure crops except rapeseed. With the exception of shepherd's-purse, no relationship between glucosinolate content of the incorporated green manure and suppression of weed growth was found. Under field conditions, early spring-planted green manure crops reduced early season weed biomass in soybean at one of the two locations. Mustard species as green manure crops reduced total weed biomass in soybean by 40% 4 weeks after emergence (WAE) and 49% 6 WAE. Soybean biomass and yield were sometimes reduced by the incorporation of green manure crops in treatments containing weeds; however, hand-weeded plots with green manure treatments yielded similar to hand-weeded plots without green manure.

Copyright

References

Hide All
Bell, D. T., and Muller, C. H. 1973. Dominance of California annual grasslands by <i>Brassica nigra</i>. Am. Midl. Nat. 90:277299.
Bialy, Z., Oleszek, W., Lewis, J., and Fenwick, G. R. 1990. Allelopathic potential of glucosinolates (mustard oil glysides) and their degradation products against wheat. Plant Soil 129:277281.
Boydston, R. A., Al-Khatib, K., Hang, A., Krishnan, G., and Nissen, S. 1994, Weed control with rapeseed (<i>Brassica napus</i>) and white mustard (<i>Brassica hirta</i>) as green manure crops. Weed Sci. Soc. Am. Abstr. 34:89.
Boydston, R. A., and Hang, A. 1995. Rapeseed (<i>Brassica napus</i>) green manure crop suppresses weeds in potato (<i>Solanum tuberosum</i>). Weed Technol. 9:669675.
Brown, P. D., and Morra, M. J. 1993. Fate of ionic thiocyanate (SCN-) in soil. J. Agric. Food Chem. 41:978982.
Brown, P. D., Morra, M. J., McCaffrey, J. P., Auld, D. L., and Williams, L. I. 1991. Allelochemicals produced during glucosinolate degradation in soil. J. Chem. Ecol. 17:20212034.
Chew, F. S., 1988. Biological effects of glucosinolates. <i>In</i> Cutler, H. G., ed. Biologically Active Natural Products. Washington, DC: American Chemical Society. pp. 155181.
Clossais-Besnard, N., and Larher, F. 1991. Physiological role of glucosinolates in <i>Brasssica napus</i> concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. J. Sci. Food Agric. 56:2538.
Dale, J. E., 1986. Decline in phytotoxicity of benzyl isothiocyanate formulated as granules. Weed Sci. 34:325327.
Erickson, C. G., and Duke, W. B. 1978. Release of phytotoxic residues from wild mustard (<i>Brassica kaber</i> (D.C) L.C. Wheeler). Proc. Northeast. Weed Sci. Soc. 32:70.
Fenwick, G. R., Heaney, R. K., and Mawson, R. 1989. Glucosinolates. <i>In</i> Cheeke, P. R., ed. Toxicants of Plant Origin. Boca Raton, FL: CRC Press. pp. 142.
Fenwick, G. R., Heaney, R. K., and Mullin, W. J. 1982. Glucosinolates and their breakdown products in food and food plants. <i>In</i> Furia, T. E., ed. CRC Critical Reviews in Food Science and Nutrition. Boca Raton, FL: CRC Press. pp. 123201.
Josefsson, E., 1968. Method for quantitative determination of p-hydroxybenzyl isothiocyanate in digests of seed meal of <i>Sinapis alba</i> L. J. Sci. Food Agric. 19:192194.
McWhorter, C. G., and Barrentine, W. L. 1988. Research priorities in weed science. Weed Technol. 2:211.
Mojtahedi, H., Santo, G. S., Hang, A. N., and Wilson, J. H. 1991. Suppression of root-knot nematode populations with selected rapeseed cultivars as green manure. J. Nematol. 23:170174.
Muehlchen, A. M., Rand, R. E., and Parke, J. L. 1990. Evaluation of crucifer green manure crops for controlling Aphanomyces root rot of peas. Plant Dis. 64:651654.
Putnam, A. R., 1983. Allelopathic chemicals. Chem. Eng. News 61:3445.
Putnam, A. R., and Duke, W. B. 1978. Allelopathy in agroecosystems. <i>In</i> Annual Review of Phytopathology. Palo Alto, CA: Annual Reviews Inc. pp. 431451.
Smelt, J. H., and Leistra, M. 1974. Conversion of metham-sodium to methyl isothiocyanate and basic data on the behavior of methyl isothiocyanate in soil. Pestic. Sci. 5:401407.
Teasdale, J. R., and Taylorson, R. B. 1986. Weed seed response to methyl isothiocyanate and metham. Weed Sci. 34:520524.
Tholen, J. T., Shifeng, S., and Truscott, R.J.W. 1989. The thymol method for glucosinolate determination. J. Sci. Food Agric. 49:157165.
Tollsten, L., and Bergstrom, G. 1988. Headspace volatiles of whole plants and macerated plant parts of <i>Brassica</i> and <i>Sinapis</i>. Phytochemistry 27:40134018.
Van Etten, C. H., and Tookey, H. L. 1979. Chemistry and biological effect of glucosinolates. <i>In</i> Rosenthal, G. A. and Janzen, D. H., eds. Herbivores: Their Interaction with Secondary Plant Metabolites. New York: Academic Press. pp. 471500.
Vaughn, S. F., Spencer, G. F., and Loria, R. 1993. Inhibition of <i>Helminthosporium solani</i> strains by natural isothiocyanates. Am. Potato J. 70:852853.
Waddington, J., 1978. Growth of barley, bromegrass and alfalfa in the greenhouse in soil containing rapeseed and wheal residues. Can. J. Plant Sci. 58:241248.
Wolf, R. B., Spencer, G. F., and Kwolek, W. F. 1984. Inhibition of velvetleaf (<i>Abutilon theophrasti</i>) germination and growth by benzyl isothiocyanate, a natural toxicant. Weed Sci. 32:612615.
Worsham, A. D., 1989. Current and potential techniques using allelopathy as an aid in weed management. Proceedings of the Symposium of Phytochemical Ecology: Allelochemicals, Mycotoxins and Insect Pheromones and Allomones. Taipei, Taiwan, R.D.C. pp. 275289.
Worsham, A. D., 1991. Allelopathic cover crops to reduce herbicide inputs. Proc. South. Weed Sci. Soc. 44:5869.
Zimdahl, R. L., 1980. Weed–Crop Competition—A Review. The International Plant Protection Center. Corvallis, OR: Oregon State University. p. 195.

Keywords

Weed Control in Soybean (Glycine max) with Green Manure Crops

  • Gopal Krishnan (a1), David L. Holshouser (a1) and Scott J. Nissen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed