Skip to main content Accessibility help

Utility of Multispectral Imagery for Soybean and Weed Species Differentiation

  • Cody J. Gray (a1), David R. Shaw (a1), Patrick D. Gerard (a2) and Lori M. Bruce (a3)


An experiment was conducted to determine the utility of multispectral imagery for identifying soybean, bare soil, and six weed species commonly found in Mississippi. Weed species evaluated were hemp sesbania, palmleaf morningglory, pitted morningglory, prickly sida, sicklepod, and smallflower morningglory. Multispectral imagery was analyzed using supervised classification techniques based upon 2-class, 3-class, and 8-class systems. The 2-class system was designed to differentiate bare soil and vegetation. The 3-class system was used to differentiate bare soil, soybean, and weed species. Finally, the 8-class system was designed to differentiate bare soil, soybean, and all weed species independently. Soybean classification accuracies classified as vegetation for the 2-class system were greater than 95%, and bare soil classification accuracies were greater than 90%. In the 3-class system, soybean classification accuracies were 70% or greater. Classification of soybean decreased slightly in the 3-class system when compared to the 2-class system because of the 3-class system separating soybean plots from the weed plots, which was not done in the 2-class system. Weed classification accuracies increased as weed density or weeks after emergence (WAE) increased. The greatest weed classification accuracies were obtained once weed species were allowed to grow for 10 wk. Palmleaf morningglory and pitted morningglory classification accuracies were greater than 90% for 10 WAE using the 3-class system. Palmleaf morningglory and pitted morningglory at the highest densities of 6 plants/m2 produced the highest classification accuracies for the 8-class system once allowed to grow for 10 wk. All other weed species generally produced classification accuracies less than 50%, regardless of planting density. Thus, multispectral imagery has the potential for weed detection, especially when being used in a management system when individual weed species differentiation is not essential, as in the 2-class or 3-class system. However, weed detection was not obtained until 8 to 10 WAE, which is unacceptable in production agriculture. Therefore, more refined imagery acquisition with higher spatial and/or spectral resolution and more sophisticated analyses need to be further explored for this technology to be used early-season when it would be most valuable.


Corresponding author

Corresponding author's E-mail:


Hide All
Anonymous 2001. Weed survey-southern states, broadleaf crops subsection. Proc. South. Weed Sci. Soc 54:244259.
Barber, L. T. 2004. Utilizing hyperspectral and multispectral remote sensing and geographic information systems to identify and differentiate weed and crop species. Ph.D. Dissertation. Mississippi State, MS: Department of Plant and Soil Sciences, Mississippi State University. 97.
Cardina, J., Johnson, G. A., and Sparrow, D. H. 1997. The nature and consequences of weed spatial distribution. Weed Sci 45:364373.
Carson, H. W., Lass, L. W., and Callihan, R. H. 1995. Detection of yellow hawkweed (Hieracium pratense) with high resolution multispectral digital imagery. Weed Technol 9:477483.
Cordes, R. C. and Bauman, T. T. 1984. Morningglory competition in soybeans. Weed Sci 32:364370.
Duda, R. O., Hart, P. E., and Stork, D. G. 2000. Pattern Classification. 2nd ed. New York: Wiley Interscience. 289.
Everitt, J. H. and DeLoach, C. J. 1990. Remote sensing of Chinese tamarisk (Tamarix chinensis) and associated vegetation. Weed Sci 38:273278.
Everitt, J. H., Escobar, D. E., Villarreal, R., Alaniz, M. A., and Davis, M. R. 1993. Integration of airborne video, global positioning system, and geographic information system technologies for detecting and mapping two woody legumes on rangelands. Weed Technol 7:981987.
Gibson, K. D., Dirks, R., Medlin, C. R., and Johnston, L. 2004. Detection of weed species in soybean using multispectral digital images. Weed Technol 18:742749.
Goudy, H. J., Bennet, K. A., Brown, R. B., and Tardif, F. J. 2001. Evaluation of site-specific weed management using a direct-injection sprayer. Weed Sci 49:359366.
Hughes, J. S., Evans, D. L., Burns, P. Y., and Hill, J. M. 1986. Identification of two southern pine species in high-resolution aerial MSS data. Photogramm. Eng. Remote Sens 52:11751180.
Koger, C. H., Shaw, D. R., Watson, C. E., and Reddy, K. N. 2003. Detecting late-season weed infestations in soybean (Glycine max). Weed Technol 17:696704.
Lamb, D. W. and Brown, R. B. 2001. Remote-sensing and mapping of weeds in crops. J. Agric. Eng. Res 78:117125.
Lass, L. W. and Prather, T. S. 2004. Detecting the locations of Brazilian pepper trees in the Everglades with a hyperspectral sensor. Weed Technol 18:437442.
Lass, L. W., Shafii, B., Price, W. J., and Thill, D. C. 2000. Assessing agreement in multispectral images of yellow starthistle (Centaurea solstitialis) with ground truth data using a Bayesian methodology. Weed Technol 14:539544.
Lillesand, T. M. and Kiefer, R. W. 2000. Remote Sensing and Image Interpretation. 4th ed. New York: John Wiley and Sons. 750.
Medlin, C. R., Shaw, D. R., Gerard, P. D., and LaMastus, F. E. 2000. Using remote sensing to detect weed infestations in Glycine max . Weed Sci 48:393398.
Rankins, A. Jr., Shaw, D. R., and Byrd, J. D. Jr. 1998. HERB and MSU-HERB field validation for soybean (Glycine max) weed control in Mississippi. Weed Technol 12:8896.
Richardson, A. J., Menges, R. M., and Nixon, P. R. 1985. Distinguishing weed from crop plants using video remote sensing. Photogramm. Eng. Remote Sens 51:17851790.
Shurtleff, J. L. and Coble, H. D. 1993. Interference of certain broadleaf weed species in soybeans (Glycine max). Weed Sci 33:654657.
Smith, A. M. and Blackshaw, R. E. 2003. Weed-crop discrimination using remote sensing: A detached leaf experiment. Weed Technol 17:811820.
[SWSS] Southern Weed Science Society, 1998. Weed Identification Guide. Champaign, IL: SWSS. 600.
Thornton, P. K., Fawcett, R. H., Dent, J. B., and Perkins, T. J. 1990. Spatial weed distribution and economic thresholds for weed control. Crop Prot 9:337342.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed