Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T12:29:55.938Z Has data issue: false hasContentIssue false

Using Plant Growth Regulators to Limit Herbicide-Induced Stem Fragmentation of Aquatic Alligatorweed (Alternanthera philoxeroides)

Published online by Cambridge University Press:  20 January 2017

Daniel Clements*
Affiliation:
Department of Primary Industries, Biosciences Research Division, 40 Ballarto Road, Frankston, Victoria 3199, Australia
Tony M. Dugdale
Affiliation:
Department of Primary Industries, Biosciences Research Division, 40 Ballarto Road, Frankston, Victoria 3199, Australia
Kym L. Butler
Affiliation:
Department of Primary Industries, Biometrics Unit, Future Farming Systems Research Division, 600 Sneydes Road, Werribee, Victoria 3030, Australia
*
Corresponding author's E-mail: daniel.clements@dpi.vic.gov.au

Abstract

Alligatorweed is subject to an eradication program in Victoria, Australia. In aquatic situations, the herbicides glyphosate and metsulfuron are used. Alligatorweed has been shown to break up soon after the application of these herbicides, resulting in the production of many stem fragments that are viable and capable of downstream colonization, compromising the effectiveness of the eradication program. This paper reports on an experiment to investigate the usefulness of commercially available plant growth regulators (PGRs) in reducing the number of viable propagules produced post-herbicide application. Three herbicide treatments (no herbicide, glyphosate, and metsulfuron) and four PGR treatments (no PGR, aviglycine [AVG], naphthalene acetic acid [NAA], and 2,4-D) were investigated in a factorial experiment. Chemicals were applied to alligatorweed growing in separate aquaria, the resulting stem fragments were collected and counted, and a subset was tested for viability. There was no evidence of PGRs having any effect on the total number of viable stem fragments produced. However, AVG reduced the total number of fragments produced. PGRs in combination with herbicide treatment had an antagonistic effect on the efficacy of the herbicides. PGRs increased belowground biomass of alligatorweed, as well as the number of apical growing tips present. Results indicate that although PGRs, particularly AVG, may be of benefit in reducing the number of alligatorweed propagules produced post-herbicide application, at the application rates tested here there would be no benefit from incorporating them into herbicide control programs for alligatorweed.

La Alternanthera philoxeroides está sujeta a un programa de erradicación en Victoria, Australia. En situaciones acuáticas, se usan los herbicidas glifosato o metsulfuron. A. philoxeroides ha mostrado desintegración un tiempo posterior a la aplicación de estos herbicidas, resultando en la producción de muchos fragmentos de tallos que son viables y capaces de colonizar rio abajo, comprometiendo la efectividad del programa de erradicación. Este artículo presenta los resultados de un experimento para investigar la utilidad de reguladores de crecimiento de plantas (PGRs) comercialmente disponibles, para reducir el número de propágulos viables producidos después de la aplicación del herbicida. En un experimento factorial, se investigaron tres tratamientos con herbicidas (sin herbicida, glifosato y metsulfuron) y cuatro tratamientos con PGRs [sin PGRs, aviglicina (AVG), ácido naftaleno acético (NAA) y 2,4-D]. Se aplicaron químicos a A. philoxeroides creciendo en acuarios separados, y los resultantes fragmentos de tallos se recolectaron, se contaron y submuestras fueron examinadas para determinar su viabilidad. No hubo evidencia de que los PGRs tuvieran algún efecto sobre el número total de fragmentos viables producidos. Sin embargo, AVG disminuyó el número total de fragmentos producidos. Los PGRs en combinación con tratamientos de herbicidas tuvieron un efecto antagónico en la eficacia de los herbicidas. Los PGRs incrementaron la biomasa subterránea de A. philoxeroides así como el número de puntas apicales de crecimiento presentes. Los resultados indican que aunque los PGRs, particularmente AVG, puedan ser de beneficio para reducir el número de propágulos de A. philoxeroides producidos después de la aplicación de herbicidas, no habría ningún beneficio al incorporarlos a los programas de control de esta maleza, con las dosis de herbicidas aquí probadas.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abu-Irmaileh, B. E., Jordan, L. S., and Kumamoto, J. 1979. Enhancement of CO2 and ethylene production and cellulase activity by glyphosate in Phaseolus vulgaris . Weed Sci. 27:103106.CrossRefGoogle Scholar
Bowes, G. G. and Spurr, D. T. 1995. Improved forage production following western snowberry (Symphoricarpos occidentalis Hook.) control with metsulfuron methyl. Can. J. Plant Sci. 75:935940.CrossRefGoogle Scholar
Bowmer, K. H. and Eberbach, P. L. 1993. Uptake and translocation of l4C-glyphosate in Alternanthera philoxeroides (Mart.) Griseb. (alligatorweed) II. Effect of plant size and photoperiod. Weed Res. 33:5967.CrossRefGoogle Scholar
Bowmer, K. H., Eberbach, P. L., and McCorkelle, G. 1993. Uptake and translocation of l4C-glyphosate in Alternanthera philoxeroides (Mart.) Griseb. (alligatorweed) I. Rhizome concentrations required for inhibition. Weed Res. 33:5357.CrossRefGoogle Scholar
Burns, J. K., Hartmond, U., and Kender, W. J. 1999. Acetolactate synthase inhibitors increase ethylene production and cause fruit drop in citrus. HortSciences 34:908910.CrossRefGoogle Scholar
Chandrasena, N. and Pinto, L. 2007. Integrated management of alligatorweed [Alternanthera philoxeroides (Mart.) Griseb] at Botany Wetlands, Sydney—a case study. Pages 5964. in Proceedings of the 21st Asia-Pacific Weed Science Society Conference.Google Scholar
Dugdale, T. M., Clements, D., Hunt, T. D., and Butler, K. L. 2010. Alligatorweed produces viable stem fragments in response to herbicide treatment. J. Aquat. Plant Manage. 48:8491.Google Scholar
Gianfagna, T. 1995. Natural and synthetic growth regulators and their use in horticultural and agronomic crops. Pages 751753. In Davis, P. J., ed. Plant Hormones. Physiology, Biochemistry and Molecular Biology. Dordrecht Academic Publishers.CrossRefGoogle Scholar
Gonzalez-Carranza, Z. H., Lozoya-Gloria, E., and Roberts, J. A. 1998. Recent developments in abscission: shedding light on the shedding process. Trends Plant Sci. 3:1014.CrossRefGoogle Scholar
Gunasekera, L. and Bonila, J. 2001. Alligatorweed: tasty vegetable in Australian backyards? J. Aquat. Plant Manage. 39:1720.Google Scholar
Julien, M. H., Bourne, A. S., and Low, V.H.K. 1992. Growth of the weed Alternanthera philoxeroides (Martius) Grisebach, (alligatorweed) in aquatic and terrestrial habitats in Australia. Plant Prot. Q. 7:102108.Google Scholar
Julien, M. H. and Broadbent, J. E. 1980. The biology of Australian weeds 3. Alternanthera philoxeroides (Mart.) Griseb. J. Aust. Inst. Agric. Sci. 46:150155.Google Scholar
Lee, T. T. and Dumas, T. 1985. Effect of glyphosate on indole-3-acetic acid metabolism in tolerant and susceptible plants. J. Plant Growth Regul. 4:2939.CrossRefGoogle Scholar
Payne, R. W. 2010. Part 2: Statistics. Pages 486487. In Payne, R. W., ed. The Guide to GenStat®. Release 13. Hemel Hempstead, Herfordshire, UK VSN International.Google Scholar
Riis, T., Madsen, T. V., and Sennels, R.S.H. 2009. Regeneration, colonisation and growth rates of allofragments in four common stream plants. Aquat. Bot. 90:209212.CrossRefGoogle Scholar
Roberts, J. A., Elliott, K. A., and Gonzalez-Carranza, Z. H. 2002. Abscission, dehiscence, and other cell separation processes. Annu. Rev. Plant Biol. 53:131–58.CrossRefGoogle ScholarPubMed
Sainty, G., McCorkelle, G., and Julien, M. 1998. Control and spread of Alligator Weed Alternanthera philoxeroides (Mart.) Griseb, in Australia: lessons for other regions. Wetlands Ecol. Manage. 5:195201.CrossRefGoogle Scholar
Thelen, K. D., Jackson, E. P., and Penner, D. 1995. 2,4-D interactions with glyphosate and sodium bicarbonate. Weed Technol. 9:301305.CrossRefGoogle Scholar
Tucker, G. A. 1993. Introduction. Pages 151. In Seymour, G. B., Taylor, J. E. and Tucker, G. A., eds. Biochemistry of Fruit Ripening. London Chapman and Hall.Google Scholar
Tucker, T. A., Langeland, K. A., and Corbin, F. T. 1994. Absorption and translocation of 14C-imazapyr and 14C-glyphosate in alligatorweed (Alternanthera philoxeroides). Weed Technol. 8:3236.CrossRefGoogle Scholar
zur Burg, F. W., Nelson, I. S., and Foret, J. A. 1961. An aspect of the herbicidal action on 2,4-D and related compounds in alligatorweed (Alternanthera philoxeroides Griseb.). Proc. South. Weed Conf. 14:239294.Google Scholar