Skip to main content Accessibility help

Using energy requirements to compare the suitability of alternative methods for broadcast and site-specific weed control

  • Guy R. Y. Coleman (a1), Amanda Stead (a2), Marc P. Rigter (a3), Zhe Xu (a4), David Johnson (a5), Graham M. Brooker (a6), Salah Sukkarieh (a7) and Michael J. Walsh (a8)...


The widespread use of herbicides in cropping systems has led to the evolution of resistance in major weeds. The resultant loss of herbicide efficacy is compounded by a lack of new herbicide sites of action, driving demand for alternative weed control technologies. While there are many alternative methods for control, identifying the most appropriate method to pursue for commercial development has been hampered by the inability to compare techniques in a fair and equitable manner. Given that all currently available and alternative weed control methods share an intrinsic energy consumption, the aim of this review was to compare methods based on energy consumption. Energy consumption was compared for chemical, mechanical, and thermal weed control technologies when applied as broadcast (whole-field) and site-specific treatments. Tillage systems, such as flex-tine harrow (4.2 to 5.5 MJ ha−1), sweep cultivator (13 to 14 MJ ha−1), and rotary hoe (12 to 17 MJ ha−1) consumed the least energy of broadcast weed control treatments. Thermal-based approaches, including flaming (1,008 to 4,334 MJ ha−1) and infrared (2,000 to 3,887 MJ ha−1), are more appropriate for use in conservation cropping systems; however, their energy requirements are 100- to 1,000-fold greater than those of tillage treatments. The site-specific application of weed control treatments to control 2-leaf-stage broadleaf weeds at a density of 5 plants m−2 reduced energy consumption of herbicidal, thermal, and mechanical treatments by 97%, 99%, and 97%, respectively. Significantly, this site-specific approach resulted in similar energy requirements for current and alternative technologies (e.g., electrocution [15 to 19 MJ ha−1], laser pyrolysis [15 to 249 MJ ha−1], hoeing [17 MJ ha−1], and herbicides [15 MJ ha−1]). Using similar energy sources, a standardized energy comparison provides an opportunity for estimation of weed control costs, suggesting site-specific weed management is critical in the economically realistic implementation of alternative technologies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Using energy requirements to compare the suitability of alternative methods for broadcast and site-specific weed control
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Using energy requirements to compare the suitability of alternative methods for broadcast and site-specific weed control
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Using energy requirements to compare the suitability of alternative methods for broadcast and site-specific weed control
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Guy Coleman, University of Sydney, I.A. Watson International Grains Research Centre, 12656 Newell Highway, Narrabri, NSW, Australia. Email:


Hide All
Agpro Australia (2017) Flail Mower Heavy Duty Standard 105. Accessed: July 15, 2018
Agricultural Flaming Innovations (2012) Flame Weeder Models. Accessed: February 13, 2017
Ahmad, MT, Tang, L, Steward, BL (2014) Automated mechanical weeding. Pages 125138 in Young, SL, Pierce, FJ, eds. Automation: The Future of Weed Control in Cropping Systems. Dordrecht, Netherlands: Springer
Al-Suhaibani, SA, Al-Janobi, A (1997) Draught requirements of tillage implements operating on sandy loam soil. J Agric Eng Res 66:177182
American Society for Agricultural Engineers (2000) Agricultural Machinery Management Data. St Joseph, MI, USA: ASAE Standards
Andreasen, C, Hansen, L, Streibig, JC (1999) Effect of ultraviolet radiation on the fresh weight of some weeds and crops. Weed Technol 13:544560
Angers, DA, Bolinder, MA, Carter, MR, Gregorich, EG, Drury, CF, Liang, BC, Voroney, RP, Simard, RR, Donald, RG, Beyaert, RP, Martel, J (1997) Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil Tillage Res 41:191201
Arvidsson, J (2010) Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. Eur J Agron 33:250256
Arvidsson, J, Keller, T, Gustafson, K (2004) Specific draught for mouldboard plough, chisel plough and disc harrow at different water contents. Soil Tillage Res 79:221231
Ascard, J (1994) Dose-response models for flame weeding in relation to plant size and density. Weed Res 34:377385
Ascard, J (1995a) Effects of flame weeding on weed species at different developmental stages. Weed Res 35:397441
Ascard, J (1995b) Thermal Weed Control by Flaming: Biological and Technical Aspects. Ph.D thesis. Alnarp, Sweden: Swedish University of Agricultural Sciences. 61 p
Ascard, J (1998) Comparison of flaming and infrared radiation techniques for thermal weed control. Weed Res 38:6976
Astatkie, T, Rifai, MN, Havard, P, Adsett, J, Lacko-Bartosova, M, Otepka, P (2007) Effectiveness of hot water, infrared and open flame thermal units for controlling weeds. Biol Agric Hortic 25:112
Bakker, T, Asselt, K, Bontsema, J, Müller, J, Straten, G (2010) Systematic design of an autonomous platform for robotic weeding. J Terramechanics 47:6373
Bayhan, Y (2006) Reduction of wear via hardfacing of chisel ploughshare. Tribol Int 39:570574
Berge, TW, Goldberg, S, Kaspersen, K, Netland, J (2012) Towards machine vision based site-specific weed management in cereals. Comput Electron Agric 81:7986
Blasco, J, Aleixos, N, Roger, JM, Rabatel, G, Moltó, E (2002) Automation and emerging technologies: robotic weed control using machine vision. Biosyst Eng 83:149157
Boldrin, A, Andersen, JK, Młller, J, Christensen, TH, Favoino, E (2009) Composting and compost utilization: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27:800812
Bond, W, Turner, R, Grundy, A (2003) A Review of Non-chemical Weed Management. Ryton Organic Gardens, Coventry, UK: HDRA, the Organic Association. Pp 81
Bowman, G (1997) Steel in the Field: A Farmer’s Guide to Weed Management Tools. Burlington, VT: Sustainable Agricultural Network. 128 p
Brodie, G (2016a) Derivation of a cropping system transfer function for weed management: Part 2. Microwave weed management. Glob J Agric Innov Res Dev 3:19
Brodie, G (2016b) Microwave weed control. Pages 88–90 in IMPI’s 50th Annual Microwave Power Symposium. Orlando, Florida: IMPI
Brodie, G, Hollins, E (2015) The effect of microwave treatment on ryegrass and wild radish plants and seeds. Glob J Agric Innov Res Dev 2:1624
Brodie, G, Jacob, M, Farrell, P (2015) Microwave and Radio-Frequency Technologies in Agriculture: An Introduction for Agriculturalists and Engineers. Berlin: De Guyter Open
Brodie, G, Ryan, C, Lancaster, C (2012a) The effect of microwave radiation on prickly paddy melon (Cucumis myriocarpus). Int J Agron 2012:110
Brodie, G, Ryan, C, Lancaster, C (2012b) Microwave technologies as part of an integrated weed management strategy: a review. Int J Agron 2012:114
Buhler, DD, Stoltenberg, DE, Becker, RL, Gunsolus, J (1994) Perennial weed populations after 14 years of variable tillage and cropping practices. Weed Sci 42:205209
Busey, P (2003) Cultural management of weeds in turfgrass. Crop Sci 43:18991911
Butler, RA, Brouder, SM, Johnson, WG, Gibson, KD (2013) Response of four summer annual weed species to mowing frequency and height. Weed Technol 27:798802
Case Corporation (2002) PTX600 Precision Tillage. Racine, WI: Case Corporation
Caslli, S, Hasanaj, A, Dimo, D (2017) Optimization of tribological parameters in the design of rotary tiller blades. Pages 36–40 in Fifth International Scientific Congress Agricultural Machinery. Varna, Bulgaria: Scientific Technical Union of Mechanical Engineering
Cavers, PB, Marguerite, K (1990) Responses of proso millet (Panicum miliaceum) seedlings to mechanical damage and/or drought treatments. Weed Technol 4:425432
Chauhan, BS, Gill, G, Preston, C (2006) Influence of tillage systems on vertical distribution, seedling recruitment and persistence of rigid ryegrass (Lolium rigidum) seed bank. Weed Sci 54:669676
Chauhan, BS, Singh, RG, Mahajan, G (2012) Ecology and management of weeds under conservation agriculture: a review. Crop Prot 38:5765
Chen, Y, Munkholm, LJ, Nyord, T (2013) A discrete element model for soil-sweep interaction in three different soils. Soil Tillage Res 126:3441
Christensen, S, Słgaard, HT, Kudsk, P, Nłrremark, M, Lund, I, Nadimi, ES, Jłrgensen, R (2009) Site-specific weed control technologies. Weed Res 49:233241
Cloutier, C, van der Weide, RY, Peruzzi, A, Leblanc, ML (2007) Mechanical weed management. Pages 111134 in Upadhyaya, MK, Blackshaw, RE, eds. Non-chemical Weed Management: Principles, Concepts and Technology. Wallingford, Oxfordshire: CABI
Cutulle, MA, Armel, G, Brosnan, JT, Kopsell, DA, Hart, WE, Vargas, JJ, Gibson, LA, Messer, RE, McLemore, AJ, Duncan, HA (2013) Evaluation of a cryogenic sprayer using liquid nitrogen and a ballasted roller for weed control. Journal of Testing and Evaluation 41:16
Daar, S (1994) New technology harnesses hot water to kill weeds. IPM Practitioner 16:15
Dalgaard, T, Halberg, N, Porter, JR (2001) A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agric Ecosyst Environ 87:5165
Davies, S, Bakker, D, Scanlan, C, Gazey, C, Hall, D, Riethmuller, G, Abrecht, D, Newman, P, Harding, A, Hayes, D (2013) Deep soil cultivation to create improved soil profiles for dryland crop production. Pages 410–429 in 2013 Society for Engineering in Agriculture Conference: Innovative Agricultural Technologies for a Sustainable Future. Barton, ACT: Engineers Australia
Davis, AS, Cardina, J, Forcella, F, Johnson, GA, Kegode, G, Lindquist, JL, Luschei, EC, Renner, KA, Sprague, CL, Williams, MM (2005) Environmental factors affecting seed persistence of annual weeds across the US corn belt. Weed Sci 53:860868
de Cauwer, B, Bogaert, S, Claerhout, S, Bulcke, R, Reheul, D (2015) Efficacy and reduced fuel use for hot water weed control on pavements. Weed Res 55:195205
Delmade (2017) Heavy Duty Cultivator. Accessed: July 15, 2018
D’Emden, FH, Llewellyn, RS, Burton, MP (2008) Factors influencing adoption of conservation tillage in Australian cropping regions. Australian Journal of Agricultural and Resource Economics 52:169182
Diprose, MF, Benson, FA (1984) Electrical methods of killing plants. J Agric Eng Res 30:197209
Douglas, A, Peltzer, SC (2004) Managing herbicide resistant annual ryegrass (Lolium rigidum Gaud.) in no-till systems in Western Australia using occasional inversion ploughing. Pages 300303 in 14th Australian Weeds Conference. Wagga Wagga, Australia: Weed Society of New South Wales
Dumanski, J (2015) Evolving concepts and opportunities in soil conservation. International Soil and Water Conservation Research 3:114
Dykes, WG (1984) Principles and practices of electrical weed control (80–10007). Page 6 in Transactions of ASAE Summer Meeting. San Antonio, CA: American Society of Agricultural Engineers
Egley, GH (1983) Weed seed and seedling reductions by soil solarization by transparent polyethylene sheets. Weed Sci 31:404409
Einböck GmbH CoKG (2017) Aerostar, Aerostar-Exact, Aerostar-Rotation. Dorf an der Pram, Austria: Einböck GmbH CoKG.
Evans, G, Bellinder, R, Hahn, R (2012) An evaluation of two novel cultivation tools. Weed Technol 26:316325
Fergedal, S (1993) Weed Control by Freezing with Liquid Nitrogen and Carbon Dioxide Snow; A Comparison between Flaming and Freezing. Dijon, France: Tholey-Theley. Pp 163166
Fernández-Quintanilla, C, Peæa, JM, Andœjar, D, Dorado, J, Ribeiro, A, López-Granados, F (2018) Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Res 58:259272
Fogelberg, F, Blom, A (2002) Water-Jet Cutting for Weed Control. Page 237 in 5th EWRS Workshop on Physical Weed Control. Pisa, Italy: European Weed Research Society
Forcella, F (2009) Potential of air-propelled abrasives for selective weed control. Weed Technol 23:317320
Forcella, F (2012) Air-propelled abrasive grit for postemergence in-row weed control in field corn. Weed Technol 26:161164
Franco, C, Pedersen, SM, Papaharalampos, H, Ørum, JE (2017) The value of precision for image-based decision support in weed management. Precis Agric 18:366382
Gates, DM, Keegan, HJ, Schleter, JC, Weidner, VR (1965) Spectral properties of plants. Appl Opt 4:1120
Gawron, JH, Keoleian, GA, De Kleine, RD, Wallington, TJ, Kim, HC (2018) Life cycle assessment of connected and automated vehicles: sensing and computing subsystem and vehicle level effects. Environ Sci Technol 52:32493256
Gibson, K, McMillan, J, Hallett, S, Jordan, T, Weller, S (2011) Effect of a living mulch on weed seed banks in tomato. Weed Technol 25:245251
Godwin, RJ (2007) A review of the effect of implement geometry on soil failure and implement forces. Soil Tillage Res 97:331340
Gramshaw, D, Stern, W (1977) Survival of annual ryegrass (Lolium rigidum Gaud.) seed in a Mediterranean type environment. II Effects of short-term burial on persistence of viable seed. Aust J Agric Res 28:93101
Green, MB (1987) Energy in pesticide manufacture, distribution and use. Pages 165177 in Stout, BA, Mudahar, MS, eds. Energy in Plant Nutrition and Pest Control. Amsterdam: Elsevier
Hansson, D, Ascard, J (2002) Influence of developmental stage and time of assessment on hot water weed control. Weed Res 42:307316
Hansson, D, Mattsson, JE (2003) Effect of air temperature, rain and drought on hot water weed control. Weed Res 43:245251
Harrigan, TM, Rotz, CA (1995) Draft relationships for tillage and seeding equipment. Appl Eng Agric 11:773783
Hasanbeigi, A, Price, L, Aden, N, Zhang, C, Li, X, Shangguan, F (2011) A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Berkeley, CA: Lawrence Berkley National Laboratory Rep. LBNL-4836E
Heap, IM (2019) The International Survey of Herbicide Resistant Weeds. Accessed: March 20, 2019
Heisel, T, Schou, J, Andreasen, C, Christensen, S (2002) Using laser to measure stem thickness and cut weed stems. Weed Res 42:242248
Heisel, T, Schou, J, Christensen, S, Andreasen, C (2001) Cutting weeds with a CO2 laser. Weed Res 41:1929
Helsel, ZR (1992) Energy and alternatives for fertilizer and pesticide use. Pages 177201 in Fluck, RC, ed. Energy in Farm Production. Amsterdam: Elsevier
Helsel, ZR (2006) Energy in pesticide production and use. Pages 157160 in Pimentel, D, ed. Encyclopedia of Pest Management. Boca Raton, FL: Taylor & Francis
Helsel, ZR (2016) Energy Use and Efficiency in Pest Control, Including Pesticide Production, Use and Management Options. Accessed: December 7, 2018
Hendrick, G, R Gill, W (1978) Rotary Tiller Design Parameters. Trans ASAE 21:6580660
Hirasawa, K, Kataoka, T, Kubo, T (2013) Relationship between Required Power and PTO Speed in Rotary Tiller. Sakai, Japan: IFAC. Pp 141146
Hobbs, PR, Sayre, K, Gupta, R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc Lond B Biol Sci 363:543555
Horvat, Z, Filipovic, D, Kosutic, S, Emert, R (2008) Reduction of mouldboard plough share wear by a combination technique of hardfacing. Tribology International 41:778782
Hummert International (2013) Model 85 Mulch Layer. Accessed: February 6, 2017
Inlon (2018) CR Series Rotary Hoe. Accessed: February 13, 2017
Ishida, Y, Okamoto, A, Kaizu, Y (2005) A study on physical weeding using a water jet. Journal of the Japanese Society of Agricultural Machinery 67:9399
James, GW, Reid, DG, Tindall, DW, inventors (2009) Method for weed control with hot foam. EP1450603B1
Jedair Compressors (n.d.) Air Compressors. Accessed: January 20, 2017
Jiangsu Hoofar Industrial Company (n.d.) Air Compressor PCP High Pressure Pump—CAMO 30 MPa. Accessed: January 20, 2017
Johnson, DW, Krall, JM, Delaney, RH, Pochop, LO (1989) Response of monocot and dicot weed species to Fresnel lens concentrated solar radiation. Weed Sci 37:797801
Johnson, DW, Krall, JM, Delaney, RH, Thiel, DS (1990) Response of seed of 10 weed species to Fresnel-lens-concentrated solar radiation. Weed Technol 4:109114
Kaierle, S, Marx, C, Rath, T, Hustedt, M, Leyson, D, Lancaster, C, Woodworth, J (2013) Find and irradiate—lasers used for weed control. Laser Technik Journal 10:4447
Kaminski, J, Sypula, M, Chlebowski, J, Nowakowski, T (2018) Research in rake tines wear. Pages 6471 in Malinovska, L, Osadcuks, V, eds. 18th International Scientific Conference Engineering for Rural Development. Jelgava, Latvia: Latvia University of Life Sciences and Technologies
Kassam, A, Friedrich, T, Derpsch, R, Lahmar, R, Mrabet, R, Basch, G, GonzÆlez-SÆnchez, EJ, Serraj, R (2012) Conservation agriculture in the dry Mediterranean climate. Field Crops Res 132:717
Kempenaar, C, Spijker, H (2004) Weed control on hard surfaces in The Netherlands. Pest Manag Sci 60:595599
Kerpauskas, P, Sirvydas, AP, Lazauskas, P, Vasinauskiene, R, Tamosiunas, A (2006) Possibilities of weed control by water steams. Agron Res 4:221225
Kim, J, Ki, H (2012) 355, 532, and 1064 nm picosecond laser interaction with grass tissues. J Appl Phys 112:114908
Knezevic, SZ, Stepanovic, S, Datta, A (2014) Growth stage affects response of selected weed species to flaming. Weed Technol 28:233242
Knezevic, SZ, Ulloa, SM (2007) Potential new tool for weed control in organically grown agronomic crops. J Agric Sci 52:95104
Kolberg, RL, Wiles, LJ (2002) Effect of steam application on cropland weeds. Weed Technol 16:4349
Komilis, D, Ham, R (2004) Life-cycle inventory of municipal solid waste and yard waste windrow composting in the United States. J Environ Eng 30:13901400
Kosterna, E (2014) The effect of different types of straw mulches on weed-control in vegetables cultivation. J Ecol Eng 15:109117
Kristoffersen, P, Rask, AM, Larsen, SU (2008) Non-chemical weed control on traffic islands: a comparison of the efficacy of five weed control techniques. Weed Res 48:1241230
Kurstjens, D (2007) Precise tillage systems for enhanced non-chemical weed management. Soil Tillage Res 97:293305
Kurstjens, DAG, Bleeker, PO (2000) Optimising torsion weeders and finger weeders. Pages 30–32 in 4th EWRS Workshop on Physical Weed Control. Eslpeet, Netherlands: European Weed Research Society
Kurstjens, DAG, Kropff, MJ (2001) The impact of uprooting and soil-covering on the effectiveness of weed harrowing. Weed Res 41:211228
Kurstjens, DAG, Kropff, MJ, Perdok, UD (2004) Method for predicting selective uprooting by mechanical weeders from plant anchorage forces. Weed Sci 52:123132
Lament, WJ (1993) Plastic mulches for the production of vegetable crops. HortTechnology 3:3539
Langner, HR, Ehlert, D, Heisig, M, Bornim, P, Kirste, A (2006) The thermal effect of laser radiation on plants. Landtechnik 61:252253
Langsenkamp, F, Sellmann, F, Kohlbrecher, M, Kielhorn, A, Strothmann, W, Michaels, A, Trautz, D (2014) Tube stamp for mechanical intra-row individual plant weed control. Pages 16–29 in Proceedings of 18th World Congress of CIGR. Beijing, China: CIGR
Lincoln University (2008) Financial Budget Manual. Lincoln, NZ: Department of Farm Management and Rural Valuation
Liu, S, Tang, J, Zhang, Z, Gaudiot, J-L (2017) CAAD: Computer architecture for autonomous driving. Computer 50:1825
Llewellyn, R, Ronning, D, Clarke, M, Mayfield, A, Walker, S, Ouzman, J (2016) Impact of Weeds in Australian Grain Production: The Cost of Weeds to Australian Grain Growers and the Adoption of Weed Management and Tillage Practices. Canberra, Australia: CSIRO
Llewellyn, RS, D’Emden, FH, Kuehne, G (2012) Extensive use of no-tillage in grain growing regions of Australia. Field Crops Res 132:204212
Lund, I, Słgaard, H, Graglia, E (2006) Micro-spraying with One Drop per Weed Plant. Tjele, Denmark: Danish Institute of Agricultural Sciences. Pp 451452
Marx, C, Barcikowski, S, Hustedt, S, Haferkamp, H, Rath, T (2012) Design and application of a weed damage model for laser-based weed control. Biosyst Eng 113:148157
Massey Ferguson (2016) MF Mouldboard Plough. Duluth, GA: AGCO Limited
Mathiassen, S, Lund, I, Kudsk, P (2016). Pages 131–137 in Proceedings of the 10th International Symposium on Adjuvants for Agrochemicals. Wageningen, Netherlands: ISAA Society
Mathiassen, SK, Bak, T, Christensen, S, Kudsk, P (2006) The effect of laser treatment as a weed control method. Biosyst Eng 95:497505
McAllister, M (1983) Reduction in the rolling resistance of tyres for trailed agricultural machinery. J Agric Eng Res 28:127137
McLaughlin, N, Drury, C, Reynolds, W, Yang, X, Li, Y, Welacky, T, Stewart, G (2008) Energy inputs for conservation and conventional primary tillage implements in a clay loam soil. Trans ASABE 51:1153–1163
Mitchell, JP, Shrestha, A, Mathesius, K, Scow, KM, Southard, RJ, Haney, RL, Schmidt, R, Munk, DS, Horwath, WR (2017) Cover cropping and no-tillage improve soil health in an arid irrigated cropping system in California’s San Joaquin Valley, USA. Soil Tillage Res 165:325335
Mizuno, A, Nagura, A, Miyamoto, T, Chakrabarti, A, Sato, T, Kimura, K, Kobayashi, M (1993) A portable weed control device using high frequency AC voltage. Pages 20002003 in McGill, C, Rowarth, J, eds. IEEE Industry Applications Conference: 28th IAS Annual Meeting. Ontario, Canada: IEEE
Mizuno, A, Tenma, T, Yamano, N (1990) Destruction of weeds by pulsed high voltage discharges. Pages 720727 in IEEE Industry Applications Society Annual Meeting. Seattle, WA: IEEE
Moitzi, G, Haas, M, Wagentristl, H, Boxberger, J, Gronauer, A (2013) Energy consumption in cultivating and ploughing with traction improvement system and consideration of the rear furrow wheel-load in ploughing. Soil Tillage Res 134:5660
MP Iron Industries (2018) Duck Foot Cultivator. Accessed: February 14, 2017
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60(SP1):3162
Nyoike, TW, Liburd, OE (2014) Reusing plastic mulch for a second strawberry crop: effects on arthropod pests, weeds, diseases and strawberry yields. Fla Entomol 97:928936
Oerke, EC (2006) Crop losses to pests. J Agric Sci 144:3143
Ortiz-Canavate, J, Hernanz, JL (1999) Energy for biological systems. Pages 1324 in Kitani, OJ, Thomas, Peart, R, Ramdani, A, eds. CIGR Handbook of Agricultural Engineering. St Joseph, MI: American Society of Agricultural Engineers
Ozores-Hampton, M, Obreza, TA, Stoffella, PJ (2001) Mulching with composted MSW for biological control of weeds in vegetable crops. Compost Sci Util 9:352361
Parish, S (1989) Weed control—testing the effects of infrared radiation. Agric Eng 44:5355
Parish, S (1990) A review of non-chemical weed control techniques. Biol Agric Hortic 7:117137
Paul, BK, Vanlauwe, B, Ayuke, F, Gassner, A, Hoogmoed, M, Hurisso, TT, Koala, S, Lelei, D, Ndabamenye, T, Six, J, Pulleman, MM (2013) Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agric Ecosyst Environ 164:1422
Perdok, UD, Kouwenhoven, JK (1994) Soil-tool interactions and field performance of implements. Soil Tillage Res 30:283326
Petersen, J, Belz, R, Walker, F, Hurle, K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93:3743
Radosevich, SR, Holt, JS, Ghersa, CM (2007) Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resource Management. 3rd ed. Hoboken, NJ: Wiley
Rask, AM, Kristoffersen, P (2007) A review of non-chemical weed control on hard surfaces. Weed Res 47:370380
Rasmussen, J (1992) Testing harrows for mechanical control of annual weeds in agricultural crops. Weed Res 32:267274
Rasmussen, J (2003) Punch planting, flame weeding and stale seedbed for weed control in row crops. Weed Res 43:393403
Rifai, MN, Astatkie, T, Lacko-Bartosova, M, Gadus, J (2002) Effect of two different thermal units and three types of mulch on weeds in apple orchards. J Environ Eng Sci 1:331338
Rifai, MN, Miller, J, Gaduš, J, Otepka, P, Košik, L (2003) Comparison of infrared, flame and steam units for their use in plant protection. Res Agric Eng 49:6573
Roper, M, Davies, S, Blackwell, P, Hall, D, Bakker, D, Jongepier, R, Ward, P (2015) Management options for water-repellent soils in Australian dryland agriculture. Soil Res 53:786806
Rostselmash (2017) Tillage Equipment. Accessed: February 13, 2017
Rotz, CA (1992) Rotary power requirements for harvesting and handling equipment. Appl Eng Agric 8:751757
Saber, MN, Lee, WS, Burks, TF, MacDonald, GE, Salvador, GA (2013) An automated mechanical weed control system for organic row crop production. Pages 17 in ASABE Annual International Meeting. Kansas City, MO: ASABE
Safa, M, Samarasinghe, S, Mohssen, M (2010) Determination of fuel consumption and indirect factors affecting it in wheat production in Canterbury, New Zealand. Energy 35:54005405
Sartorato, I, Zanin, G, Baldoin, C, De Zanche, C (2005) Observations on the potential of microwaves for weed control. Weed Res 46:19
Schou, J, Heisel, T, Nordskov, A, Christensen, S, Jensen, PS, Thestrup, B, Toftmann, B (2002) Quantitative laser cutting of plants. Pages 734–742 in Proceedings of the International Symposium on High-Power Laser Ablation. Taos, NM: SPIE
Sellmann, F, Bangert, W, Grzonka, S, Hänsel, M, Haug, S, Kielhorn, A, Michaels, A, Möller, K, Rahe, F, Strothmann, W, Trautz, D, Ruckelshausen, A (2014) Remote Farming 1: Human-Machine Interaction for a Field-Robot-based Weed Control Application in Organic Farming. Pages 36–42 in Proceedings of the 4th International Conference on Machine Control and Guidance. Braunschweig, Germany: MCG
Sivesind, EC, Leblanc, ML, Cloutier, DC, Seguin, P, Stewart, KA (2009) Weed response to flame weeding at different developmental stages. Weed Technol 23:438443
Smith, AN, Reberg-Horton, SC, Place, GT, Meijer, AD, Arellano, C, Paul, J (2011) Rolled rye mulch for weed suppression in organic no-tillage soybeans. Weed Sci 59:224231
Stepanovic, S (2013) Positioning an Innovative Flame-weeding Technology into Crop Production. Master’s of Science dissertation. Lincoln: University of Nebraska–Lincoln. 154 p
Tajima, T, Song, HJ, Yaita, M, Ajito, K, Kukutsu, N (2013) 300-GHz LTCC horn antennas based on antenna-in-package technology. Pages 231–234 in Proceedings of the 43rd European Microwave Conference. Nuremberg, Germany: EuMA
Talex (2012) Disc Mower OPTI CUT 210. Accessed: February 13, 2017
Teasdale, RJ, Mohler, CL (2000) The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci 48:385392
Terpstra, R, Kouwenhoven, JK (1981) Inter-row and intra-row weed control with a hoe-ridger. J Agric Eng Res 26:127134
Tewari, VK, Datta, RK, Murthy, ASR (1993) Field performance of weeding blades of a manually operated push-pull weeder. J Agric Eng Res 55:129141
Tortech Transformers (2018) Neon Transformer for Lighting Applications. Accessed: January 20, 2018
Toukura, Y, Devee, E, Hongo, A (2006) Uprooting and shearing resistances in the seedlings of four weedy species. Weed Biol Manag 6:3543
Tuck, CR, O’Dogherty, MJ, Baker, DE, Gale, GE (1991) Field experiments to study the performance of toothed disc mowing mechanisms. J Agric Eng Res 50:93106
Ulloa, SM, Datta, A, Knezevic, SZ (2010) Tolerance of selected weed species to broadcast flaming at different growth stages. Crop Prot 29:13811388
Unverferth Manufacturing (2017) Rolling Harrow 225. Accessed: February 13, 2017
Vester, J (1985) New experience with flame cultivation for weed control. Pages 10–20 in Proceedings of the International Meeting for Flame Cultivation for Weed Control. Namur, Belgium: CRABE Opprebais
Vigneault, C, Benoit, DL, McLaughlin, NB (1990) Energy aspects of weed electrocution. Reviews of Weed Sci 5:1526
Vlachopoulos, J (2009) An Assessment of Energy Savings Derived from Mechanical Recycling of Polyethylene versus New Feedstock. Hamilton, ON, Canada: The World Bank. 22 p
Walsh, MJ, Powles, SB (2014) High seed retention at maturity of annual weeds infesting crop fields highlights the potential for harvest weed seed control. Weed Technol 28:486493
Wayland, J, Merkle, M, Davis, F, Menges, RM, Robinson, R (1975) Control of weeds with UHF electromagnetic fields. Weed Res 15:15
Weedtechnics (2016) SW900 Product Specifications. Accessed: February 13, 2017
Wells, D (2001) Total Energy Indicators of Agricultural Sustainability: Dairy Farming Case Study. Wellington, NZ: Ministry of Agriculture and Forestry
Wiles, LJ (2009) Beyond patch spraying: site-specific weed management with several herbicides. Precis Agric 10:277290
Wöltjen, C, Haferkamp, H, Rath, T, Herzog, D (2008) Plant growth depression by selective irradiation of the meristem with CO2 and diode lasers. Biosyst Eng 101:316324
Yang, C, Prasher, SO, Landry, J, Ramaswamy, H (2003) Development of an image processing system and a fuzzy algorithm for site-specific herbicide applications. Precis Agric 4:518
Yenish, JP, Doll, JD, Buhler, DD (1992) Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci 40:429433
Yordanova, M, Gerasimova, N (2016) Effect of mulching on weed infestation and yield of beetroot (Beta vulgaris ssp. rapaceae atrorubra Krass). Organic Agriculture 6:133138
Zimdahl, RL (2013) Fundamentals of Weed Science. 4th ed. Amsterdam, Netherlands: Academic Press. P 648


Using energy requirements to compare the suitability of alternative methods for broadcast and site-specific weed control

  • Guy R. Y. Coleman (a1), Amanda Stead (a2), Marc P. Rigter (a3), Zhe Xu (a4), David Johnson (a5), Graham M. Brooker (a6), Salah Sukkarieh (a7) and Michael J. Walsh (a8)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed