Skip to main content Accessibility help
×
Home

Understanding the Mode of Action of the Chloroacetamide and Thiocarbamate Herbicides

  • E. Patrick Fuerst (a1)

Abstract

Chloroacetamide and thiocarbamate herbicides have many properties in common: both herbicide classes are effective only as preemergence herbicides; they inhibit early seedling growth and cause similar injury symptoms in susceptible species; they are detoxified in plants by glutathione conjugation; they have a similar spectrum of selectivity; they can be applied safely in certain susceptible grass crops when applied with antidotes; and they can inhibit the synthesis of lipids, isoprenoids, and other metabolic processes requiring coenzyme A. It can be hypothesized that these similarities are due to the ability of the chloroacetamides and the sulfoxide of thiocarbamates to bind covalently to enzymes, coenzymes, or metabolic intermediates containing sulfhydryl (-SH) groups.

Copyright

References

Hide All
1. Armstrong, T. F., Meggitt, W. F., and Penner, D. 1973. Absorption, translocation, and metabolism of alachlor by yellow nutsedge. Weed Sci. 21:357360.
2. Ashton, F. M., DeVilliers, O. T., Glenn, R. K., and Duke, W. B. 1977. Localization of metabolic sites of action of herbicides. Pestic. Biochem. Physiol. 7:122141.
3. Banting, J. D. 1970. Effect of diallate and triallate on wild oat and wheat cells. Weed Sci. 18:8084.
4. Breaux, E. J. 1986. Identification of initial metabolites of acetochlor in corn and soybean seedlings. J. Agric. Food Chem. 34:884888.
5. Breaux, E. J. 1987. Initial metabolism of acetochlor in tolerant and susceptible seedlings. Weed Sci. 35:463468.
6. Breaux, E. J., Patanella, J. E., and Sanders, E. F. 1987. Chloroacetanilide herbicide selectivity: analysis of glutathione and homoglutathione in tolerant, susceptible, and safened seedlings. J. Agric. Food Chem. 35:474478.
7. Caldwell, J. 1984. Xenobiotic acyl-coenzymes A: critical intermediates in the biochemical pharmacology and toxicology of carboxylic acids. Biochem. Soc. Trans. 12:911.
8. Carringer, R. D., Rieck, C. E., and Bush, L. P. 1978. Metabolism of EPTC in corn (Zea mays). Weed Sci. 26:157171.
9. Carringer, R. D., Rieck, C. E., and Bush, L. P. 1978. Effect of R-25788 on EPTC metabolism in corn (Zea mays). Weed Sci. 26:167171.
10. Casida, J. E., Gray, R. A., and Tiles, H. 1974. Thiocarbamate sulfoxides: potent, selective, and biodegradable herbicides. Science 184:573574.
11. Casida, J. E., Kimmel, E. C., Ohkawa, H. O., and Ohkawa, R. 1975. Sulfoxidation of thiocarbamate herbicides and metabolism of thiocarbamate sulfoxides in living mice and liver enzyme systems. Pestic. Biochem. Physiol. 5:111.
12. Casida, J. E., Kimmel, E. C., Lay, M. M., Ohkawa, H., Rodebush, J. E., Gray, R. A., Tseng, C. K., and Tilles, H. 1975. Thiocarbamate sulfoxide herbicides. Environ. Qual. Saf. Suppl. III:675679.
13. Chandler, J. M., Basler, E., and Santelmann, P. W. 1974. Uptake and translocation of alachlor in soybean and wheat. Weed Sci. 22:253258.
14. Chang, S. S., Ashton, F. M., and Bayer, D. E. 1985. Butachlor influence on selected metabolic processes of plant cells and tissues. J. Plant Growth Regul. 4:19.
15. Chem, T. M., Seaman, D. E., and Ashton, F. M. 1968. Herbicidal action of molinate in barnyardgrass and rice. Weed Sci. 16:2831.
16. Dawson, J. H. 1963. Development of barnyardgrass seedlings and their response to EPTC. Weeds 11:6066.
17. Deal, L. M. and Hess, F. D. 1980. An analysis of the growth inhibitory characteristics of alachlor and metolachlor. Weed Sci. 28:168175.
18. Deal, L. M., Reeves, J. T., Larkins, B. A., and Hess, F. D. 1980. Use of an in vitro protein synthesizing system to test the mode of action of chloroacetamides. Weed Sci. 28:334340.
19. Dhillon, N. S., and Anderson, J. L. 1972. Morphological, anatomical and biochemical effects of propachlor on seedling growth. Weed Res. 12:182189.
20. Dixon, G. A., and Stoller, E. W. 1982. Differential toxicity, absorption, translocation, and metabolism of metolachlor in corn (Zea mays) and yellow nutsedge (Cyperus esculentus). Weed Sci. 30:225230.
21. Donald, W. W., Fawcett, R. S., and Harvey, R. G. 1979. EPTC effects on corn (Zea mays) growth and endogenous gibberellins. Weed Sci. 27:122127.
22. Duke, W. B., Slife, F. W., Hanson, J. B., and Butler, H. S. 1975. An investigation on the mechanism of action of propachlor. Weed Sci. 23:142147.
23. Ebert, E. 1982. The role of waxes in the uptake of metolachlor into sorghum in relation to the protectant CGA-43089. Weed Res. 22:305311.
24. Ebert, E. 1980. Herbicidal effects of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2- methoxy-1-methylethyl)acetamide] at the cellular level in sorghum. Pestic. Biochem. Physiol. 13:227236.
25. Fuerst, E. P., and Gronwald, J. W. 1986. Induction of rapid metabolism of metolachlor in sorghum (Sorghum bicolor) shoots by CGA-92194 and other antidotes. Weed Sci. 34:354361.
26. Gentner, W. A. 1966. The influence of EPTC on external foliage wax deposition. Weed Sci. 14:2730.
27. Gray, R. A., and Joo, G. K. 1978. Site of uptake and action of thiocarbamate herbicides and herbicide antidotes in corn seedlings. Pages 6784 in Pallos, F. M. and Casida, J. E., eds. Chemistry and Action of Herbicide Antidotes. Academic Press, New York.
28. Gronwald, J. W., Fuerst, E. P., Eberlein, C. V., and Egli, M. A. 1987. Effect of herbicide antidotes on glutathione content and glutathione S-transferase activity of sorghum shoots. Pestic. Biochem. Physiol. 29:6676.
29. Hamm, P. C. 1972. Some unique biological activity-structure relationships of the acylated anilides of the alachlor type. Pages 4164 in Tahori, A. C., ed. Herbicides, Fungicides, Formulation Chemistry, Proc. 2nd Int. Cong. Pestic. Chem. (IUPAC), Vol. V. Gordon and Breach, New York.
30. Hatzios, K. K. 1984. Herbicide antidotes: development, chemistry, and mode of action. Adv. Agroa 36:265316.
31. Hess, F. D. 1982. Determining causes and categorizing types of growth inhibition induced by herbicides. Pages 207230 in Moreland, D. E., St. John, J. B., and Hess, F. D., eds. Biochemical Responses Induced by Herbicides. Am. Chem. Soc., Washington, DC.
32. Hubbell, J. P., and Casida, J. E. 1977. Metabolic fate of the N,N-dialkylcarbamoyl moiety of thiocarbamate herbicides in rats and corn. J. Agric. Food Chem. 25:404413.
33. Jaworski, E. G. 1969. Analysis of the mode of action of herbicidal α-chloroacetamides. J. Agric. Food Chem. 17:165170.
34. Jaworski, E. G. 1956. Biochemical action of CDAA, a new herbicide. Science 123:847848.
35. Karunen, P., and Wilkinson, R. E. 1975. Influence of S-ethyl dipropylthiocarbamate (EPTC) on wheat root phospholipid fatty acid composition. Physiol. Plant 35:228231.
36. Ketchersid, M. L., Norton, K., and Merkle, M. G. 1981. Influence of soil moisture on the safening effect of CGA-43089 in grain sorghum (Sorghum bicolor). Weed Sci. 29:281287.
37. Knake, E. L., and Wax, L. M. 1968. The importance of the shoot of giant foxtail for uptake of preemergence herbicides. Weed Sci. 16:393395.
38. Kolattukudy, P. E., and Brown, L. 1974. Inhibition of cuticular lipid biosynthesis in Pisum sativum by thiocarbamates. Plant Physiol. 53:903906.
39. Lamoureux, G. L., and Frear, D. S. 1979. Pesticide metabolism in higher plants: In vitro enzyme studies. Pages 77128 in Paulson, G. D., Frear, D. S., and Marks, E. P., eds. Xenobiotic Metabolism: In Vitro Methods. Am. Chem. Soc. Symposium Series 97, Washington, DC.
40. Lamoureux, G. L., and Rusness, D. G. 1983. Malonylcysteine conjugates as end-products of glutathione metabolism in plants. Pages 295300 in Miyamoto, J. et al., ed. IUPAC Pesticide Chemistry: Human Welfare and the Environment. Pergamon Press, New York.
41. Lamoureux, G. L., and Rusness, D. G. 1987. EPTC metabolism in corn, cotton, and soybean: identification of a novel metabolite derived from the metabolism of a glutathione conjugate. J. Agric. Food Chem. 35:17.
42. Lamoureux, G. L., Stafford, L. E., and Tanaka, F. S. 1971. Metabolism of 2-chloro-N-isopropylacetanilide (propachlor) in the leaves of corn, sorghum, sugarcane, and barley. J. Agric. Food Chem. 19:346350.
43. Lay, M. M., and Casida, J. E. 1976. Dichloroacetamide antidotes enhance thiocarbamate sulfoxide detoxification by elevating corn root glutathione content and glutathione S-transferase activity. Pestic. Biochem. Physiol. 6:442456.
44. Lay, M. M., and Casida, J. E. 1978. Involvement of glutathione and glutathione S-transferases in the action of dichloroacetamide antidotes for thiocarbamate herbicides. Pages 151160 in Pallos, F. M. and Casida, J. E., eds. Chemistry and Action of Herbicide Antidotes. Academic Press, New York.
45. Lay, M. M., Hubbell, J. P., and Casida, J. E. 1975. Dichloroacetamide antidotes for thiocarbamate herbicides: mode of action. Science 189:287288.
46. Leavitt, J.R.C., and Penner, D. 1979. In vitro conjugation of glutathione and other thiols with acetanilide herbicides and EPTC sulfoxide and the action of the herbicide antidote R-25788. J. Agric. Food Chem. 27:533536.
47. Mann, J. D., and Pu, M. 1968. Inhibition of lipid synthesis by certain herbicides. Weed Sci. 16:197198.
48. Mann, J. D., Jordan, L. S., and Day, B. E. 1965. A survey of herbicides for their effect upon protein synthesis. Plant Physiol. 40:840843.
49. Marsh, H. V., Bates, J., and Trudeau, P. 1975. Studies on the biochemical action of alachlor. Abstr. Weed Sci. Soc. Am. 15:67.
50. Molin, W. T., Anderson, E. J., and Porter, C. A. 1986. Effect of alachlor on anthocyanin and lignin synthesis in etiolated sorghum [Sorghum bicolor (L.) Moench.] mesocotyls. Pestic. Biochem. Physiol. 25:105111.
51. Molin, W. T., Naylor, K. M., Chupp, J. P., and Porter, C. A. 1987. Differential inhibition of anthocyanin synthesis in sorghum by alpha-haloacetanilides. Abstr. Weed Sci. Soc. Am. 27:6263.
52. Moreland, D. E., Malhotra, S. S., Gruenhagen, R. D., and Shokrah, E. H. 1969. Effects of herbicides on RNA and protein syntheses. Weed Sci. 17:556563.
53. Mozer, T. J., Tiemeier, D. C., and Jaworski, E. G. 1983. Purification and characterization of corn glutathione S-transferase. Biochemistry 22.10681072.
54. Nalewaja, J. D. 1968. Uptake and translocation of diallate in wheat, barley, flax, and wild oat. Weed Sci. 16:309312.
55. Nalewaja, J. D., Behrens, R., and Schmid, A. R. 1964. Uptake, translocation, and fate of EPTC-C14 in alfalfa. Weeds 12:269272.
56. Narasaiah, D. B., and Harvey, R. G. 1977. Alachlor placement in the soil as related to the phytotoxicity to maize (Zea mays L.) seedlings. Weed Res. 17:163168.
57. Oliver, L. R. Prendeville, G. N., and Schreiber, M. M. 1968. Species differences in site of root uptake and tolerance to EPTC. Weed Sci. 16:534537.
58. Parker, C. 1963. Factors affecting the selectivity of 2,3-dichloroallyldiisopropylthiocarbamate (diallate) against Avena spp. in wheat and barley. Weed Res. 3:259276.
59. Prendeville, G. N. 1968. Shoot zone uptake of soil-applied herbicides. Weed Res. 8:106114.
60. Shimabukuro, R. H. 1985. Detoxication of herbicides. Pages 215240 in Duke, S. O., ed. Weed Physiology, Vol. II, Herbicide Physiology. CRC Press Inc., Boca Raton, FL.
61. Stephenson, G. R., Bunce, N. J., Makowski, R. I., Bergsma, M. D., and Curry, J. C. 1979. Structure-activity relationships for antidotes to thiocarbamate herbicides in corn. J. Agric. Food Chem. 27:543547.
62. Stephenson, G. R., Bunce, N. J., Makowski, R. I., and Curry, J. C. 1978. Structure-activity relationships for S-ethyl N,N-dipropylthiocarbamate (EPTC) antidotes in corn. J. Agric. Food Chem. 26:137140.
63. Still, G. G., Davis, D. G., and Zander, G. L. 1970. Plant epicuticular lipids: alteration by herbicidal carbamates. Plant Physiol. 46:307314.
64. Wilkinson, R. E. 1978. Physiological response of lipid components to thiocarbamates and antidotes. Pages 85108 in Pallos, F. M. and Casida, J. E., eds. Chemistry and Action of Herbicide Antidotes. Academic Press, New York.
65. Wilkinson, R. E. 1981. Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] inhibition of gibberellin precursor biosynthesis. Pestic. Biochem. Physiol. 16:199205.
66. Wilkinson, R. E. 1982. Alachlor influence on sorghum growth and gibberellin biosynthesis. Pestic. Biochem. Physiol 17:177184.
67. Wilkinson, R. E. 1983. Gibberellin precursor biosynthesis inhibition by EPTC and reversal by R-25788. Pestic. Biochem. Physiol. 19:321329.
68. Wilkinson, R. E. 1985. CDAA inhibition of kaurene oxidation in etiolated sorghum coleoptiles. Pestic. Biochem. Physiol. 23:1923.
69. Wilkinson, R. E. 1986. Diallate inhibition of gibberellin biosynthesis in sorghum coleoptiles. Pestic. Biochem. Physiol. 25:9397.
70. Wilkinson, R. E., and Ashley, D. 1979. EPTC induced modification of gibberellin biosynthesis. Weed Sci. 27:270274.
71. Wilkinson, R. E., and Oswald, T. H. 1987. S-ethyl dipropylthiocarbamate (EPTC) and 2,2-dichloro-N,N-di-2-propenylacetamide (dichlormid) inhibitions of synthesis of acetyl-coenzyme A derivatives. Pestic. Biochem. Physiol. 28:3843.
72. Wilkinson, R. E., and Smith, A. E. 1975. Reversal of EPTC induced fatty acid synthesis inhibition. Weed Sci. 23:9092.
73. Wilkinson, R. E., and Smith, A. E. 1975. Thiocarbamate inhibition of fatty acid biosynthesis in isolated spinach chloroplasts. Weed Sci. 23:100104.
74. Wilkinson, R. E., and Smith, A. E. 1976. Butylate, pebulate, and vernolate inhibition of plant fatty acid biosynthesis. Phytochem. 15:841842.

Keywords

Understanding the Mode of Action of the Chloroacetamide and Thiocarbamate Herbicides

  • E. Patrick Fuerst (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed