Skip to main content Accessibility help
×
Home

Seed destruction of weeds in southern US crops using heat and narrow-windrow burning

  • Jason K. Norsworthy (a1), Jeremy K. Green (a2), Tom Barber (a3), Trent L. Roberts (a4) and Michael J. Walsh (a5)...

Abstract

Narrow-windrow burning has been a successful form of harvest weed seed control in Australian cropping systems, but little is known about the efficacy of narrow-windrow burning on weed seeds infesting U.S. cropping systems. An experiment was conducted using a high-fire kiln that exposed various grass and broadleaf weed seeds to temperatures of 200, 300, 400, 500, and 600 C for 20, 40, 60, and 80 s to determine the temperature and time needed to kill weed seeds. Weeds evaluated included Italian ryegrass, barnyardgrass, johnsongrass, sicklepod, Palmer amaranth, prickly sida, velvetleaf, pitted morningglory, and hemp sesbania. Two field experiments were also conducted over consecutive growing seasons, with the first experiment aimed at determining the amount of heat produced during burning of narrow windrows of soybean harvest residues (chaff and straw) and the effect of this heat on weed seed mortality. The second field experiment aimed to determine the effect of wind speed on the duration and intensity of burning narrow windrows of soybean harvest residues. Following exposure to the highest temperature and longest duration in the kiln, only sicklepod showed any survival (<1% average); however, in most cases, the seeds were completely destroyed (ash). A heat index of only 22,600 was needed to kill all seeds of Palmer amaranth, barnyardgrass, and Italian ryegrass. In the field, all seeds of the evaluated weed species were completely destroyed by narrow-windrow burning of 1.08 to 1.95 kg m−2 of soybean residues. The burn duration of the soybean harvest residues declined as wind speed increased. Findings from the kiln and field experiments show that complete kill is likely for weed seeds concentrated into narrow windrows of burned soybean residues. Given the low cost of implementation of narrow-windrow burning and the seed kill efficacy on various weed species, this strategy may be an attractive option for destroying weed seed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Seed destruction of weeds in southern US crops using heat and narrow-windrow burning
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Seed destruction of weeds in southern US crops using heat and narrow-windrow burning
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Seed destruction of weeds in southern US crops using heat and narrow-windrow burning
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Jason K. Norsworthy, Department of Crop Soil and Environmental Sciences, 115 Plant Sciences Building, University of Arkansas, Fayetteville, AR72704. Email: jnorswor@uark.edu

Footnotes

Hide All

Associate Editor: Drew Lyon, Washington State University

Footnotes

References

Hide All
Brabham, C, Norsworthy, JK, Houston, MM, Varanasi, VK, Barber, T (2019) Confirmation of S-metolachlor resistance in Palmer amaranth (Amaranthus palmeri). Weed Technol 33:720726
Dahlquist, RM, Prather, TS, Stapleton, JJ (2007) Time and temperature requirements for weed seed thermal death. Weed Sci 55:619625
Egley, GH (1990) High-temperature effects on germination and survival of weed seeds in soil. Weed Sci 38:429435
Egley, GH, Chandler, JM (1983) Longevity of weed seeds after 5.5 years in the Stoneville 50-year buried-seed study. Weed Sci 31:264270
Green, JK (2019) Use of harvest weed seed control strategies in Arkansas soybean. Masters Thesis, University of Arkansas. 80 p
Heap, I (2019) The international survey of herbicide resistant weeds. http://www.weedscience.org. Accessed: December 8, 2019
Howe, III OW, Oliver, LR (1987) Influence of soybean (Glycine max) row spacing on pitted morningglory (Ipomoea lacunosa) interference. Weed Sci 35:185193
Hoyle, JA, McElroy, JS (2012) Relationship between temperature and heat duration on large crabgrass (Digitaria sanguinalis), Virginia buttonweed (Diodia virginiana), and cock’s comb kyllinga (Kyllinga squamulata) seed mortality. Weed Technol 26:800806
Lyon, DJ, Huggins, DR, Spring, JF (2016) Windrow burning eliminates Italian ryegrass (Lolium perenne ssp. multiflorum) seed viability. Weed Technol 30:279283
Nandula, VK, Montgomery, GB, Vennapusa, AR, Jugulam, M, Giacomini, DA, Ray, JD, Bond, JA, Steckel, LE, Tranel, PJ (2018) Glyphosate-resistant junglerice (Echinochloa colona) from Mississippi and Tennessee: magnitude and resistance mechanisms. Weed Sci 66:603610
Norsworthy, JK, Oliver, LR (2002) Pitted morningglory interference in drill-seeded glyphosate-resistant soybean. Weed Sci 50:2633
Norsworthy, JK, Korres, NE, Walsh, MJ, Powles, SB (2016) Integrating herbicide programs with harvest weed seed control and other fall management practices for the control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Weed Sci 64:540550
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60 (Special Issue I):3162
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, IV DO, Eubank, TW, Scott, RC (2013) Assessment of weed management practices and problem weeds in the Midsouth United States–soybean: a consultant’s perspective. Weed Technol 27:612622
Schwartz, LM, Norsworthy, JK, Young, BG, Bradley, KW, Kruger, GR, Davis, VM, Steckel, LE, Walsh, MJ (2016) Tall waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri) seed production and retention at soybean maturity. Weed Technol 30:284290
Schwartz-Lazaro, LM, Green, JK, Norsworthy, JK (2017) Seed shatter and retention of Palmer amaranth (Amaranthus palmeri) and barnyardgrass (Echinochloa crus-galli) at and after soybean maturity. Weed Technol 31:617622
Schwartz-Lazaro, LM, Norsworthy, JK, Steckel, LE, Stephenson, DO IV, Bradley, KW, Bond, JA (2018) A midsouthern consultant’s survey on weed management practices in soybean. Weed Technol 32:116125
Shirtliffe, SJ, Entz, MH (2005) Chaff collection reduces seed dispersal of wild oat (Avena fatua) by a combine harvester. Weed Sci 53:465470
[SWSS] Southern Weed Science Society (2012) 2012 Weed Survey–Grass Crops Subsection. South Weed Sci Soc 65:267288
[SWSS] Southern Weed Science Society (2013) 2013 Weed Survey–Broadleaf Crop Subsection. South Weed Sci Soc 66:275287
Thompson, AJ, Jones, NE, Blair, AM (1997) The effect of temperature on viability of imbibed weed seeds. Ann Appl Biol 130:123134
Varanasi, VK, Brabham, C, Norsworthy, JK (2018) Confirmation and characterization of non–target site resistance to fomesafen in Palmer amaranth (Amaranthus palmeri). Weed Sci 66:702709
Walsh, M, Newman, P (2007) Burning narrow windrows for weed seed destruction. Field Crop Res 104:2430
Walsh, MJ, Powles, SB (2007) Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. Weed Technol 21:332338
Walsh, M, Newman, P, Powles, S (2013) Targeting weed seed in-crop: a new weed control paradigm for global agriculture. Weed Technol 27:431436
Walsh, M, Ouzman, J, Newman, P, Powles, S, Llewellyn, R (2017) High levels of adoption indicate that harvest weed seed control is now an established weed control practice in Australian cropping. Weed Technol 31:341347
Wharton, MJ (1955) The use of tetrazolium test for determining the viability of seeds of the genus Brassica. Proc Int Seed Test Assoc 20:8188
White, SN, Boyd, NS (2016) Effect of dry heat, direct flame, and straw burning on seed germination of weed species in lowbush blueberry fields. Weed Technol 30:263270
Wiese, AF, Sweeten, JM, Bean, BW, Salisbury, CD, Chenault, EW (1998) High-temperature composting of cattle feedlot manure kills weed seed. Appl Eng Agric 14:377380
[WSSA] Weed Science Society of America (2017) 2017 Weed Survey. http://www.wssa.net. Accessed: March 21, 2018

Keywords

Seed destruction of weeds in southern US crops using heat and narrow-windrow burning

  • Jason K. Norsworthy (a1), Jeremy K. Green (a2), Tom Barber (a3), Trent L. Roberts (a4) and Michael J. Walsh (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.