Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T08:18:25.567Z Has data issue: false hasContentIssue false

Row Width Affects Weed Management in Type II Black Bean

Published online by Cambridge University Press:  20 January 2017

Ryan C. Holmes
Affiliation:
Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
Christy L. Sprague*
Affiliation:
Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
*
Corresponding author's E-mail: sprague1@msu.edu

Abstract

Field studies were conducted in 2010 and 2011 at two locations in Michigan to examine the effect of row width and herbicide combination on weed suppression and yield in the new Type II black bean variety ‘Zorro.' Black bean was planted in 38- and 76-cm rows. Six weed control strategies were examined: S-metolachlor + halosulfuron (PRE), S-metolachlor (PRE) followed by (fb) bentazon + fomesafen (POST), halosulfuron (PRE) fb clethodim (+ fomesafen at one site in one year) (POST), imazamox + bentazon (POST), a weed-free control, and a nontreated control. Weed control and crop injury were evaluated throughout the growing season. In addition, weeds were counted by species in late July, and weed biomass was harvested and weighed at the end of the season. Black bean yield was obtained by direct harvest. Narrow rows reduced weed populations in two of the four site–year combinations (referred to hereafter as site–years), reduced weed biomass in three of the four site–years, and often improved control of upright broadleaf weeds. All herbicide combinations generally reduced weed populations and biomass, but control of specific weeds was variable. Crop injury was generally slight and transient. Yield was greater in narrow rows in two of the four site–years. All herbicide combinations increased yield compared with the nontreated control and resulted in similar yields to one another. Yield and weed suppression was often maximized in narrow rows, while herbicide performance varied by year and weed spectrum.

En 2010 y 2011 se realizaron estudios de campo en dos localidades en Michigan para examinar el efecto de la combinación de distancia entre hileras de siembra y de herbicidas en la supresión de malezas y el rendimiento de la nueva variedad de frijol negro Tipo II 'Zorro'. El frijol negro se sembró en hileras espaciadas a 38 y 76 cm. Se examinaron seis estrategias de control de malezas: S-metolachlor + halosulfuron (PRE), S-metolachlor (PRE) seguido de (fb) bentazon + fomesafen (POST), halosulfuron (PRE) fb clethodim (+ fomesafen en una localidad en un año) (POST), imazamox + bentazon (POST), un testigo libre de malezas, y un testigo no tratado. El control de malezas y el daño al cultivo fueron evaluados a lo largo de la temporada de crecimiento. Adicionalmente, se contó el número de malezas por especie a finales de Julio, y la biomasa de malezas fue cosechada y pesada al final de la temporada. El rendimiento del frijol negro se obtuvo por medio de cosecha directa. Hileras más angostas redujeron las poblaciones de malezas en dos de las cuatro combinaciones de localidad-año (referidas de aquí en adelante como localidad-año), redujeron la biomasa de malezas en tres de los cuatro localidad-año, y frecuentemente mejoraron el control de malezas de hoja ancha de crecimiento erecto. Todas las combinaciones de herbicidas generalmente redujeron las poblaciones y biomasa de malezas, pero el control de malezas específicas fue variable. El daño del cultivo fue generalmente poco y pasajero. El rendimiento fue mayor en hileras angostas en dos de los cuatro localidad-año. Todas las combinaciones de herbicidas incrementaron el rendimiento en comparación con el testigo no tratado y resultaron en rendimientos similares entre sí. El rendimiento y la supresión de malezas fueron frecuentemente maximizados en hileras angostas, mientras que el desempeño de los herbicidas varió según el año y el espectro de malezas.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andrade, F. H., Calvino, P., Cirilo, A., and Barbieri, P. 2002. Yield responses to narrow rows depend on increased radiation interception. Agron. J. 94:975980.Google Scholar
Arnold, R. N., Murray, M. W., Gregory, E.J., and Smeal, D. 1993. Weed control in pinto beans (Phaseolus vulgaris) with imazethapyr combinations. Weed Technol. 7:361364.Google Scholar
Blackshaw, R. E. and Esau, R. 1991. Control of annual broadleaf weeds in pinto beans (Phaseolus vulgaris). Weed Technol. 5:532538.Google Scholar
Blackshaw, R. E., Molnar, L.J., Müendel, H. H., Saindon, G., and Li, X. 2000. Integration of cropping practices and herbicides improves weed management in dry bean (Phaseolus vulgaris). Weed Technol. 14:327336.Google Scholar
Blackshaw, R. E., Müendel, H. H., and Saindon, G. 1999. Canopy architecture, row spacing and plant density effects on yield of dry bean (Phaseolus vulgaris) in the absence and presence of hairy nightshade (Solanum sarrachoides). Can. J. Plant Sci. 79:663669.Google Scholar
Burnside, O. C., Ahrens, W. H., Holder, B. J., Wiens, M. J., Johnson, M. M., and Ristau, E. A. 1994. Efficacy and economics of various mechanical plus chemical weed control systems in dry beans (Phaseolus vulgaris). Weed Technol. 8:238244.Google Scholar
Burnside, O. C., Wiens, M.J., Holder, B. J., Weisberg, S., and Ristau, E. A. 1998. Critical periods for weed control in dry beans (Phaseolus vulgaris). Weed Sci. 46:301306.Google Scholar
Cooper, R. L. 1977. Response of soybean cultivars to narrow rows and planting rates under weed-free conditions. Agron. J. 69:8992.Google Scholar
Grafton, K. F., Schneiter, A. A., and Nagle, B. J. 1988. Row spacing, plant population, and genotype x row spacing interaction effects on yield and yield components of dry bean. Agron. J. 80:631634.Google Scholar
Harder, D. B., Sprague, C. L., and Renner, K. A. 2007. Effect of soybean row width and population on weeds, crop yield, and economic return. Weed Technol. 21:744752.Google Scholar
Hekmat, S., Soltani, N., Shropshire, C., and Sikkema, P. H. 2008. Effect of imazamox plus bentazon on dry bean (Phaseolus vulgaris L.). Crop Prot. 27:14911494.Google Scholar
Hosfield, G. L., Bushey, S. M., and Kelly, J. D. 2005. Merlot: a new small red dry bean for Michigan. Michigan State University Extension Bulletin E-2933, East Lansing, MI. 2 p.Google Scholar
Kelly, J. D. 1994. Traditional and novel approaches to bean improvement. Mich. Bean Digest. 19(1):47.Google Scholar
Kelly, J. D. 2001. Remaking bean plant architecture for efficient production. Advan. Agron. 71:109143.Google Scholar
Kelly, J. D. 2010. The story of bean breeding. 2010. Michigan State University publication prepared for BeanCAP and Works, PBG June 2010. http://www.css.msu.edu/Bean/_pdf/Story_of_Bean_Breeding_in_the_US.pdf. Accessed March 28, 2012.Google Scholar
Légère, A. and Schreiber, M. M. 1989. Competition and canopy architecture as affected by soybean (Glycine max) row width and density of redroot pigweed (Amaranthus retroflexus). Weed Sci. 37:8492.Google Scholar
Lehman, W. F. and Lambert, J. W. 1960. Effects of spacing of soybean plants between and within rows on yield and its components. Agron. J. 52:8486.Google Scholar
Malik, V. S., Swanton, C. J., and Michaels, T. E. 1993. Interaction of white bean (Phaseolus vulgaris L.) cultivars, row spacing, and seeding density with annual weeds. Weed Sci. 41(1):6268.Google Scholar
Nelson, K. A. and Renner, K. A. 1998. Weed control in wide- and narrow- row soybean (Glycine max) with imazamox, imazethapyr, and CGA-277476 plus quizalofop. Weed Technol. 12:137144.Google Scholar
Norsworthy, J. K. and Oliver, L. R. 2001. Effect of seeding rate of drilled glyphosate-resistant soybean (Glycine max) on seed yield and gross profit margin. Weed Technol. 15:284292.Google Scholar
Peters, E. J., Gebhardt, M. R., and Stritzke, J. F. 1965. Interrelations of row spacings, cultivations, and herbicides for weed control in soybeans. Weeds. 13:285289.Google Scholar
Redden, R. J. 1987. Response of navy beans to row width and plant population density in Queensland. Aust. J. Exp. Agric. 27:455463.Google Scholar
Robertson, L. S. and Frazier, R. D., eds. 1978. Dry Bean Production – Principles and Practices. Michigan State University Extension Bulletin E-1251, East Lansing, MI. 225 p.Google Scholar
Schwartz, H. F., Brick, M. A., Harveson, R. M., and Franc, G. D., eds. 2004. Dry Bean Production & Integrated Pest Management. 2nd edition. Regional publication by Central High Plains Dry Bean and Beet Group, Colorado State University, University of Nebraska, and University of Wyoming: Bulletin 562A. 167 p.Google Scholar
Sprague, C. L., and Everman, W. J. 2011. Weed control guide for field crops. Michigan State Extension Bulletin E-434, East Lansing, MI. 184 p.Google Scholar
Teasdale, J. R. and Frank, J. R. 1983. Effect of row spacing on weed competition with snap beans (Phaseolus vulgaris). Weed Sci. 31:8185.Google Scholar
Yelverton, F. H. and Coble, H. D. 1991. Narrow row spacing and canopy formation reduces weed resurgence in soybeans (Glycine max). Weed Technol. 5:169174.Google Scholar
Young, B. G., Young, J. M., Gonzini, L. C., Hart, S. E., and Wax, L. M. 2001. Weed management in narrow- and wide-row glyphosate-resistant soybean (Glycine max). Weed Technol. 15:112121.Google Scholar