Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T03:34:41.982Z Has data issue: false hasContentIssue false

Response of Eggplant (Solanum melongena) Grafted onto Tomato (Solanum lycopersicum) Rootstock to Herbicides

Published online by Cambridge University Press:  20 January 2017

Sushila Chaudhari*
Affiliation:
NC Agricultural Research Service, Associate Professor, and Graduate Student, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Katherine M. Jennings
Affiliation:
NC Agricultural Research Service, Associate Professor, and Graduate Student, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
David W. Monks
Affiliation:
NC Agricultural Research Service, Associate Professor, and Graduate Student, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
David L. Jordan
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Christopher C. Gunter
Affiliation:
NC Agricultural Research Service, Associate Professor, and Graduate Student, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Nicholas T. Basinger
Affiliation:
NC Agricultural Research Service, Associate Professor, and Graduate Student, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Frank J. Louws
Affiliation:
Department of Plant Pathology and Director of NSF-Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27695
*
Corresponding author's E-mail: schaudh@ncsu.edu.

Abstract

Tomato rootstocks have been successfully used for eggplant production. However, the safety of herbicides registered in tomato has not been tested on grafted eggplant, which is a combination of tomato rootstock and eggplant scion. Greenhouse and field experiments were conducted to determine response of grafted eggplant on tomato rootstock to napropamide, metribuzin, halosulfuron, trifluralin, S-metolachlor, and fomesafen herbicides. In greenhouse experiments, herbicide treatments included pretransplant S-metolachlor (400 and 800 g ai ha−1), pre- or posttransplant metribuzin (140 and 280 g ai ha−1), and posttransplant halosulfuron (18 and 36 g ai ha−1). In field experiments, herbicide treatments included pretransplant fomesafen (280 and 420 g ai ha−1), halosulfuron (39 and 52 g ha−1), metribuzin (280 and 550 g ha−1), napropamide (1,120 and 2,240 g ai ha−1), S-metolachlor (800 and 1,060 g ha−1), and trifluralin (560 and 840 g ai ha−1). The eggplant cultivar ‘Santana' was used as the scion and nongrafted control, and two hybrid tomatoes ‘RST-04−106-T' and ‘Maxifort' were used as rootstocks for grafted plants. In both greenhouse and field experiments, there was no difference between grafted and nongrafted eggplant in terms of injury caused by herbicides. Metribuzin posttransplant at 140 and 280 g ha−1 caused 94 and 100% injury to grafted and nongrafted eggplant 4 wk after treatment. In field experiments, pretransplant fomesafen, napropamide, S-metolachlor, and trifluralin caused less than 10% injury and no yield reduction in grafted and nongrafted eggplant. However, metribuzin caused injury and yield reduction in both grafted and nongrafted eggplant. Metribuzin at 550 g ha−1 caused 60 and 81% plant stand loss in 2013 and 2014, respectively. Halosulfuron reduced yield 24% in both grafted and nongrafted eggplant compared to nontreated control in 2013 but did not reduce yield in 2014. The pretransplant S-metolachlor, napropamide, fomesafen, and trifluralin are safe to use on eggplant grafted onto tomato rootstock, and will be a valuable addition to the toolkit of eggplant growers.

Los patrones de tomate han sido exitosamente usados para la producción de berenjena. Sin embargo, la seguridad de herbicidas registrados para tomate no ha sido evaluada en berenjena injertada, la cual es una combinación de patrón de tomate e injerto de berenjena. Experimentos de invernadero y de campo fueron realizados para determinar la respuesta de berenjena injertada sobre un patrón de tomate a los herbicidas napropamide, metribuzin, halosulfuron, trifluralin, S-metolachlor, y fomesafen. En los experimentos de invernadero, los tratamientos de herbicidas incluyeron S-metolachlor (400 y 800 g ai ha−1) en pretrasplante, metribuzin (140 y 280 g ai ha−1) en pre y postrasplante, y halosulfuron (18 y 36 g ai ha−1) en postrasplante. En los experimentos de campo, los tratamientos de herbicidas incluyeron fomesafen (280 y 420 g ai ha−1), halosulfuron (39 y 52 g ha−1), metribuzin (280 y 550 g ha−1), napropamide (1,120 y 2,240 g ai ha−1), S-metolachlor (800 y 1,600 g ha−1) y trifluralin (560 y 840 g ai ha−1), todos en postrasplante. El cultivar de berenjena 'Santana' fue usado como injerto y como testigo sin injertar, y dos híbridos de tomate 'RST-04-106-T' y 'Maxifort' fueron usados como patrones para las plantas injertadas. Tanto en los experimentos de invernadero como en los de campo, no hubo diferencias entre las berenjenas injertadas y no injertadas en términos del daño causado por los herbicidas. Metribuzin a 140 y 280 g ha−1 postrasplante causó 94 y 100% de daño a la berenjena injertada y no injertada 4 semanas después del tratamiento. En los experimentos de campo, fomesafen, napropamide, S-metolachlor, y trifluralin pretrasplante causaron menos de 10% de daño y no redujeron el rendimiento en berenjena injertada y sin injertar. Sin embargo, metribuzin causó daño y reducciones en el rendimiento en berenjena injertada y sin injertar. Metribuzin a 550 g ha−1 causó 60 y 81% de pérdida del cultivo establecido en 2013 y 2014, respectivamente. Halosulfuron redujo el rendimiento 24% en berenjena injertada y no injertada al compararse con el testigo sin tratamiento en 2013, pero no redujo el rendimiento en 2014. S-metolachlor, napropamide, fomesafen, y trifluralin en pretrasplante fueron seguros para su uso en berenjena injertada sobre patrones de tomate, y serán una adición valiosa al grupo de herramientas de los productores de berenjena.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Steve Fennimore, University of California, Davis.

References

Literature Cited

Abdelmageed, AHA, Gruda, N (2009) Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. Eur J Hortic Sci 74:1620 Google Scholar
Adcock, CW, Foshee, WG, Wehtje, GR, Gilliam, CH (2008) Herbicide combinations in tomato to prevent nutsedge (Cyperus esulentus) punctures in plastic mulch for multi-cropping systems. Weed Technol 22:136141 Google Scholar
Aliyu, L, Lagoke, STO (1995) Evaluation of herbicides for weed control in Solanum aethiopicum L. (scarlet eggplant) at Samaru, Nigeria. Crop Prot 14:479481 Google Scholar
Anonymous (2015a) Devrinol® DF-XT herbicide label. King of Prussia, PA: United Phosphorus, Inc. 9 pGoogle Scholar
Anonymous (2015b) TriCor® DF herbicide label. King of Prussia, PA: United Phosphorus, Inc. 19 pGoogle Scholar
Baker, RS, Warren, GF (1962) Selective herbicidal action of amiben on cucumber and squash. Weeds 10:219224 Google Scholar
Black, LL, Wu, DL, Wang, JF, Kalb, T, Abbass, D, Chen, JH (2003) Grafting tomatoes for production in the hot-wet season. Asian Vegetable Research and Development Center. Shanhua, Taiwan: AVRDC Publication 03–551. 6 pGoogle Scholar
Bletsos, F (2006) Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouse eggplant production. Sci Hortic 107:325331 Google Scholar
Cohen, R, Eizenberg, H, Edelstien, M, Horev, C, Lande, T, Porat, A, Achdari, G, Hershenhorn, J (2008) Evaluation of herbicides for selective weed control in grafted watermelons. Phytoparasitica 36:6673 Google Scholar
Fernández-García, N, Martínez, V, Cerdá, A, Carvajal, M (2002) Water and nutrient uptake of grafted tomato plants grown under saline conditions. J Plant Physiol 159:899905 Google Scholar
Flanders, JT, Culpepper, AS (2002) Eggplant response to topical and precision-directed applications of Sandea (halosulfuron). Pages 6465 in Proceedings of the Georgia Vegetable Conference. Savannah, GA University of Georgia Cooperative Extension Service Google Scholar
Fortino, JJ, Splittstoesser, WE (1974) The use of metribuzin for weed control in tomato. Weed Sci 22:615619 Google Scholar
Gonese, JU, Weber, JB (1998) Herbicide rate recommendations: soil parameter equations vs. registered rate recommendations. Weed Technol 12:235242 Google Scholar
Jiang, L, Xu, X, Li, Z, Doohan, D (2013) Grafting imparts glyphosate resistance in soybean. Weed Technol 27:412416 Google Scholar
Kemble, JM, ed (2013) Southeastern U.S. Vegetable Crop Handbook US-2013. Lincolnshire, IL: Vance Publishing Corp. 277 pGoogle Scholar
Khah, EM (2011) Effect of grafting on growth, performance and yield of aubergine (Solanum melongena L.) in greenhouse and open-field. Int J Plant Prod 5:359366 Google Scholar
Lee, J, Oda, M (2003) Grafting of herbaceous vegetable and ornamental crops. Hortic Rev 28:61124 Google Scholar
Lee, JM (1994) Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience 29:235239 Google Scholar
Majumdar, K, Singh, N (2007) Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere 66:630637 Google Scholar
Moncada, A, Miceli, A, Vetrano, F, Mineo, V, Planeta, D, and D'Anna, F (2013) Effect of grafting on yield and quality of eggplant (Solanum melongena L.). Sci Hortic 149:108114 Google Scholar
Rauch, BJ, Bellinder, RR, Brainard, DC, Lane, M, Thies, JE (2007) Dissipation of fomesafen in New York state soils and potential to cause carryover injury to sweet corn. Weed Technol 21:206212 Google Scholar
Rivard, CL, Louws, FJ (2006) Grafting for Disease Resistance in Heirloom Tomatoes. North Carolina Cooperative Extension Service Bulletin Ag–675. Raleigh, NC: North Carolina Cooperative Extension Service. 8 pGoogle Scholar
Stringer, JK, Smith, AB, Cullis, BR (2012) Spatial analysis of agricultural field experiments. Pages 122126 in Hinkelmann, K, ed. Design and Analysis of Experiments: Special Designs and Applications. Volume 3. Hoboken, NJ: John Wiley and Sons Google Scholar
Swaider, JM, Ware, GW, McCollum, JP (1992) Producing Vegetable Crops. 4th edn. Danville, IL: Interstate Publishers. 607 pGoogle Scholar
Traka-Mavrona, E, Koutsika-Sotiriou, M, Pritsa, T (2000) Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Sci Hortic 83:353362 Google Scholar
[USDA–AMS] U.S. Department of Agriculture–Agricultural Marketing Service. 2013. United States Standards for Grades of Eggplant. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050264. Accessed: July 27, 2013Google Scholar
Venema, JH, Dijk, BE, Bax, JM, VanHasselt, PR, Elzenga, JTM (2008) Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ Exp Bot 63:359367 Google Scholar
Webster, T, Culpepper, A (2005) Eggplant tolerance to halosulfuron applied through drip irrigation. HortScience 40:17961800 Google Scholar
Zijlstra, S, den Nijs, APM (1987) Effects of root systems of tomato genotypes on growth and earliness, studied in grafting experiments at low temperature. Euphytica 36:693700 Google Scholar