Skip to main content Accessibility help

Response of Eggplant (Solanum melongena) Grafted onto Tomato (Solanum lycopersicum) Rootstock to Herbicides

  • Sushila Chaudhari (a1), Katherine M. Jennings (a1), David W. Monks (a1), David L. Jordan (a2), Christopher C. Gunter (a1), Nicholas T. Basinger (a1) and Frank J. Louws (a3)...


Tomato rootstocks have been successfully used for eggplant production. However, the safety of herbicides registered in tomato has not been tested on grafted eggplant, which is a combination of tomato rootstock and eggplant scion. Greenhouse and field experiments were conducted to determine response of grafted eggplant on tomato rootstock to napropamide, metribuzin, halosulfuron, trifluralin, S-metolachlor, and fomesafen herbicides. In greenhouse experiments, herbicide treatments included pretransplant S-metolachlor (400 and 800 g ai ha−1), pre- or posttransplant metribuzin (140 and 280 g ai ha−1), and posttransplant halosulfuron (18 and 36 g ai ha−1). In field experiments, herbicide treatments included pretransplant fomesafen (280 and 420 g ai ha−1), halosulfuron (39 and 52 g ha−1), metribuzin (280 and 550 g ha−1), napropamide (1,120 and 2,240 g ai ha−1), S-metolachlor (800 and 1,060 g ha−1), and trifluralin (560 and 840 g ai ha−1). The eggplant cultivar ‘Santana' was used as the scion and nongrafted control, and two hybrid tomatoes ‘RST-04−106-T' and ‘Maxifort' were used as rootstocks for grafted plants. In both greenhouse and field experiments, there was no difference between grafted and nongrafted eggplant in terms of injury caused by herbicides. Metribuzin posttransplant at 140 and 280 g ha−1 caused 94 and 100% injury to grafted and nongrafted eggplant 4 wk after treatment. In field experiments, pretransplant fomesafen, napropamide, S-metolachlor, and trifluralin caused less than 10% injury and no yield reduction in grafted and nongrafted eggplant. However, metribuzin caused injury and yield reduction in both grafted and nongrafted eggplant. Metribuzin at 550 g ha−1 caused 60 and 81% plant stand loss in 2013 and 2014, respectively. Halosulfuron reduced yield 24% in both grafted and nongrafted eggplant compared to nontreated control in 2013 but did not reduce yield in 2014. The pretransplant S-metolachlor, napropamide, fomesafen, and trifluralin are safe to use on eggplant grafted onto tomato rootstock, and will be a valuable addition to the toolkit of eggplant growers.

Los patrones de tomate han sido exitosamente usados para la producción de berenjena. Sin embargo, la seguridad de herbicidas registrados para tomate no ha sido evaluada en berenjena injertada, la cual es una combinación de patrón de tomate e injerto de berenjena. Experimentos de invernadero y de campo fueron realizados para determinar la respuesta de berenjena injertada sobre un patrón de tomate a los herbicidas napropamide, metribuzin, halosulfuron, trifluralin, S-metolachlor, y fomesafen. En los experimentos de invernadero, los tratamientos de herbicidas incluyeron S-metolachlor (400 y 800 g ai ha−1) en pretrasplante, metribuzin (140 y 280 g ai ha−1) en pre y postrasplante, y halosulfuron (18 y 36 g ai ha−1) en postrasplante. En los experimentos de campo, los tratamientos de herbicidas incluyeron fomesafen (280 y 420 g ai ha−1), halosulfuron (39 y 52 g ha−1), metribuzin (280 y 550 g ha−1), napropamide (1,120 y 2,240 g ai ha−1), S-metolachlor (800 y 1,600 g ha−1) y trifluralin (560 y 840 g ai ha−1), todos en postrasplante. El cultivar de berenjena 'Santana' fue usado como injerto y como testigo sin injertar, y dos híbridos de tomate 'RST-04-106-T' y 'Maxifort' fueron usados como patrones para las plantas injertadas. Tanto en los experimentos de invernadero como en los de campo, no hubo diferencias entre las berenjenas injertadas y no injertadas en términos del daño causado por los herbicidas. Metribuzin a 140 y 280 g ha−1 postrasplante causó 94 y 100% de daño a la berenjena injertada y no injertada 4 semanas después del tratamiento. En los experimentos de campo, fomesafen, napropamide, S-metolachlor, y trifluralin pretrasplante causaron menos de 10% de daño y no redujeron el rendimiento en berenjena injertada y sin injertar. Sin embargo, metribuzin causó daño y reducciones en el rendimiento en berenjena injertada y sin injertar. Metribuzin a 550 g ha−1 causó 60 y 81% de pérdida del cultivo establecido en 2013 y 2014, respectivamente. Halosulfuron redujo el rendimiento 24% en berenjena injertada y no injertada al compararse con el testigo sin tratamiento en 2013, pero no redujo el rendimiento en 2014. S-metolachlor, napropamide, fomesafen, y trifluralin en pretrasplante fueron seguros para su uso en berenjena injertada sobre patrones de tomate, y serán una adición valiosa al grupo de herramientas de los productores de berenjena.


Corresponding author

Corresponding author's E-mail:


Hide All
Abdelmageed, AHA, Gruda, N (2009) Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. Eur J Hortic Sci 74:1620
Adcock, CW, Foshee, WG, Wehtje, GR, Gilliam, CH (2008) Herbicide combinations in tomato to prevent nutsedge (Cyperus esulentus) punctures in plastic mulch for multi-cropping systems. Weed Technol 22:136141
Aliyu, L, Lagoke, STO (1995) Evaluation of herbicides for weed control in Solanum aethiopicum L. (scarlet eggplant) at Samaru, Nigeria. Crop Prot 14:479481
Anonymous (2015a) Devrinol® DF-XT herbicide label. King of Prussia, PA: United Phosphorus, Inc. 9 p
Anonymous (2015b) TriCor® DF herbicide label. King of Prussia, PA: United Phosphorus, Inc. 19 p
Baker, RS, Warren, GF (1962) Selective herbicidal action of amiben on cucumber and squash. Weeds 10:219224
Black, LL, Wu, DL, Wang, JF, Kalb, T, Abbass, D, Chen, JH (2003) Grafting tomatoes for production in the hot-wet season. Asian Vegetable Research and Development Center. Shanhua, Taiwan: AVRDC Publication 03–551. 6 p
Bletsos, F (2006) Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouse eggplant production. Sci Hortic 107:325331
Cohen, R, Eizenberg, H, Edelstien, M, Horev, C, Lande, T, Porat, A, Achdari, G, Hershenhorn, J (2008) Evaluation of herbicides for selective weed control in grafted watermelons. Phytoparasitica 36:6673
Fernández-García, N, Martínez, V, Cerdá, A, Carvajal, M (2002) Water and nutrient uptake of grafted tomato plants grown under saline conditions. J Plant Physiol 159:899905
Flanders, JT, Culpepper, AS (2002) Eggplant response to topical and precision-directed applications of Sandea (halosulfuron). Pages 6465 in Proceedings of the Georgia Vegetable Conference. Savannah, GA University of Georgia Cooperative Extension Service
Fortino, JJ, Splittstoesser, WE (1974) The use of metribuzin for weed control in tomato. Weed Sci 22:615619
Gonese, JU, Weber, JB (1998) Herbicide rate recommendations: soil parameter equations vs. registered rate recommendations. Weed Technol 12:235242
Jiang, L, Xu, X, Li, Z, Doohan, D (2013) Grafting imparts glyphosate resistance in soybean. Weed Technol 27:412416
Kemble, JM, ed (2013) Southeastern U.S. Vegetable Crop Handbook US-2013. Lincolnshire, IL: Vance Publishing Corp. 277 p
Khah, EM (2011) Effect of grafting on growth, performance and yield of aubergine (Solanum melongena L.) in greenhouse and open-field. Int J Plant Prod 5:359366
Lee, J, Oda, M (2003) Grafting of herbaceous vegetable and ornamental crops. Hortic Rev 28:61124
Lee, JM (1994) Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience 29:235239
Majumdar, K, Singh, N (2007) Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere 66:630637
Moncada, A, Miceli, A, Vetrano, F, Mineo, V, Planeta, D, and D'Anna, F (2013) Effect of grafting on yield and quality of eggplant (Solanum melongena L.). Sci Hortic 149:108114
Rauch, BJ, Bellinder, RR, Brainard, DC, Lane, M, Thies, JE (2007) Dissipation of fomesafen in New York state soils and potential to cause carryover injury to sweet corn. Weed Technol 21:206212
Rivard, CL, Louws, FJ (2006) Grafting for Disease Resistance in Heirloom Tomatoes. North Carolina Cooperative Extension Service Bulletin Ag–675. Raleigh, NC: North Carolina Cooperative Extension Service. 8 p
Stringer, JK, Smith, AB, Cullis, BR (2012) Spatial analysis of agricultural field experiments. Pages 122126 in Hinkelmann, K, ed. Design and Analysis of Experiments: Special Designs and Applications. Volume 3. Hoboken, NJ: John Wiley and Sons
Swaider, JM, Ware, GW, McCollum, JP (1992) Producing Vegetable Crops. 4th edn. Danville, IL: Interstate Publishers. 607 p
Traka-Mavrona, E, Koutsika-Sotiriou, M, Pritsa, T (2000) Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Sci Hortic 83:353362
[USDA–AMS] U.S. Department of Agriculture–Agricultural Marketing Service. 2013. United States Standards for Grades of Eggplant. Accessed: July 27, 2013
Venema, JH, Dijk, BE, Bax, JM, VanHasselt, PR, Elzenga, JTM (2008) Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ Exp Bot 63:359367
Webster, T, Culpepper, A (2005) Eggplant tolerance to halosulfuron applied through drip irrigation. HortScience 40:17961800
Zijlstra, S, den Nijs, APM (1987) Effects of root systems of tomato genotypes on growth and earliness, studied in grafting experiments at low temperature. Euphytica 36:693700



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed