Skip to main content Accessibility help

Postharvest Tillage Reduces Downy Brome (Bromus tectorum L.) Infestations in Winter Wheat

  • Frank L. Young (a1), Alex G. Ogg (a2) and J. Richard Alldredge (a3)


In the Pacific Northwest, downy brome continues to infest winter wheat, especially in low-rainfall areas where the winter wheat–summer fallow rotation is the dominant production system. In Washington, a study was conducted for 2 yr at two locations in the winter wheat–summer fallow region to determine the influence of four postharvest tillage treatments on vertical seed movement, seedbank depletion, and plant densities of downy brome. The four tillage implements included a disk, sweep plow, harrow, and skew treader. The study also included a no-till treatment for comparison. The sweep plow and disk led to the most vertical movement of downy brome seed compared with the no-till treatment. Approximately 75% of the fall postharvest seed in the no-till treatment was located either on the soil surface or in the 0- to 3-cm depth at both locations. In contrast, 75% of the seed in the disked treatment was located from 0 to 6 cm deep at both locations. The disk and sweep plow both decreased downy brome seed in the soil at the 0- to 3-cm depth compared with the harrow and no-till treatments. There was no difference in downy brome plant densities following postharvest tillage in the summer fallow due to any of the treatments. However, plant densities in the subsequent winter wheat crop were reduced by the disk and sweep plow compared with the no-till and skew-treader treatments. In general, seed densities as affected by the skew treader fell between the disk and the no-till treatments. The use of the sweep plow and the disk should be integrated into a weed management strategy for downy brome in the wheat–fallow region of the Pacific Northwest.

En el Pacífico Noroeste, Bromus tectorum continúa infestando campos de trigo de invierno, especialmente en áreas con baja precipitación donde la rotación de trigo de invierno y barbecho de verano es el sistema dominante de producción. En Washington, se realizó un estudio por 2 años, en dos localidades en la región de rotación trigo de invierno y barbecho en verano, para determinar la influencia de cuatros tratamientos de labranza pos-cosecha sobre el movimiento vertical de la semilla, agotamiento del banco de semillas, y la densidad de plantas de B. tectorum. Los cuatro implementos de labranza fueron una rastra de discos, un cultivador de cuchilla, un cultivador de cincel, y un cultivador rotativo de dientes oblicuos. El estudio también incluyó un tratamiento de labranza cero para fines de comparación. El cultivador de cuchilla y la rastra de discos produjo el mayor movimiento vertical de semilla de B. tectorum al compararse con el tratamiento de labranza cero. Después de la cosecha en el otoño, aproximadamente 75% de la semilla en el tratamiento de labranza cero se localizó en la superficie del suelo o a una profundidad de 0 a 3 cm en ambas localidades. En cambio, 75% de la semilla en el tratamiento de rastra de discos se localizó de 0 a 6 cm de profundidad en ambas localidades. La rastra de discos y el cultivador de cuchillas disminuyeron la semilla de B. tectorum en el suelo de 0 a 3 cm de profundidad al compararse con los tratamientos de cultivador de cincel y la labranza cero. No hubo diferencia en la densidad de plantas de B. tectorum después de la labranza pos-cosecha en el barbecho de verano producto de los tratamientos. Sin embargo, la densidad de plantas en el siguiente cultivo de trigo de invierno se redujo con la rastra de discos y el cultivador de cuchillas al compararse con los tratamientos de labranza cero y el cultivador rotativo de dientes oblicuos. En general, la densidad de semillas producto del cultivador de dientes oblicuos estuvo entre los tratamientos de rastra de discos y la labranza cero. El uso del cultivador de cuchillas y la rastra de discos debería integrarse a estrategias de manejo de B. tectorum en la región de Pacífico Noroeste donde se tiene la rotación trigo-barbecho.


Corresponding author

Corresponding author's E-mail:


Hide All
Anderson, RL (1998a) Ecological characteristics of three winter annual grasses. Weed Technol 12:478483
Anderson, RL (1998b) Seeding emergence of winter annual grasses as affected by limited tillage and crop canopy. Weed Technol 12:262267
Chepil, WA (1946) Germination of weed seeds. 1. Longevity, periodicity of germination, and viability of seeds in cultivated soils. Sci Agr 26:307346
Duncan, CA, Jachetta, JJ, Brown, ML, Carrithers, VF, Clark, JK, DiTomaso, JM, Lym, RG, McDaniel, KC, Renz, MJ, Rice, PM (2004) Assessing the economic, environmental, and societal losses from invasive plants on rangeland and wildlands. Weed Technol 18:14111416
Gleichsner, JA, Appleby, AP (1989) Effect of depth and duration of seed burial on ripgut brome (Bromus rigidus). Weed Sci 37:6872
Gollany, HT, Allmaras, RR, Copeland, SM, Albrecht, SL, Douglas, CL Jr. (2005) Tillage and nitrogen fertilizer influence on carbon and silica distribution in a mollisol of the Pacific Northwest. Soil Sci Soc Am J 69:11021109
Hulbert, LC (1955) Ecological studies of Bromus tectorum and other annual bromegrasses. Ecol Monogr 25:181213
Hull, AC, Hansen, WT Jr. (1974) Delayed germination of cheatgrass seed. J Range Manage 27:366368
Kettler, TA, Lyon, DJ, Doran, JW, Powers, WL, Stroup, WW (2000) Soil quality assessment after weed-control tillage in a no-till wheat–fallow cropping system. Soil Sci Soc Am J 64:339346
Kovach, DA, Thill, DC, Young, FL (1988) A water-spray system for removing seed from soil. Weed Technol 2:338341
Mack, RN (1981) Invasion of Bromus tectorum L into Western North America—an ecological chronicle. Agro-Ecosyst 7:145165
Mohler, CL, Frisch, JC, McCulloch, CE (2006) Vertical movement of weed seed surrogates by tillage implements and natural processes. Soil Till Res 86:110122
Roberts, HA (1981) Seed banks in soils. Pages 155 in Coaker, TH, ed. Advances in Applied Biology VI. New York: Academic
Rydrych, DJ (1976) Downy Brome Seed Production as Influenced by Six Winter Wheat Cultivars. Portland, OR: Western Society for Weed Science Research Progress Rep. p 159
Rydrych, DJ, Muzik, TJ (1968) Downy brome competition and control in dryland wheat. Agron. J 60:279280
Stahlman, PW, Miller, SD (1990) Downy brome (Bromus tectorum) interference and economic thresholds in winter wheat (Triticum aestivum). Weed Sci 38:224228
Steinbauer, GP, Grigsby, BH (1957) Field and laboratory studies on the dormancy and germination of the seeds of chess (Bromus secalinus L.) and downy bromegrass (Bromus tectorum L.). Weeds 5:14
Thorne, ME, Young, FL, Pan, WL, Bafus, R, Alldredge, JR (2003) No-till spring cereal cropping systems reduce wind erosion potential in the wheat/fallow region of the pacific northwest. J Soil Water Conserv 58:250257
Thorne, ME, Young, FL, Yenish, JP (2006) Cropping systems alter weed seed bank in Pacific Northwest, USA semi-arid wheat region. Crop Prot 26:11211134
Wicks, GA, Burnside, OC, Fenster, CR (1971) Influence of soil type and depth of planting on downy brome seed. Weed Sci 19:8286
Yenish, JP, Doll, JP, Buhler, DD (1992) Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci 40:429433
Yenish, J, Veseth, R, Ogg, A, Thill, D, Ball, D, Young, F, Gallandt, E, Morishita, D, Mallory-Smith, C, Wysocki, D, Gohlke, T (1998) Managing Downy Brome under Conservation Tillage Systems in the Inland Northwest Cropping Region. PNW Cooperative Extension Pub. PNW0509. 15 p
Young, FL, Thorne, ME (2004) Weed species dynamics and management in no-till and reduced-till fallow cropping systems for the semi-arid agricultural region of the Pacific Northwest, USA. Crop Prot 23:10971110
Young, JA, Evans, RA, Eckert, RE Jr. (1969) Population dynamics of downy brome. Weed Sci 17:2026


Postharvest Tillage Reduces Downy Brome (Bromus tectorum L.) Infestations in Winter Wheat

  • Frank L. Young (a1), Alex G. Ogg (a2) and J. Richard Alldredge (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed