Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T01:24:14.841Z Has data issue: false hasContentIssue false

Influence of Droplet Size on Efficacy of the Formulated Products Engenia™, Roundup PowerMax®, and Liberty®

Published online by Cambridge University Press:  20 January 2017

Chris J. Meyer*
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Greg R. Kruger
Affiliation:
University of Nebraska-Lincoln, North Platte, NE 69101
Tom Barber
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
*
Corresponding author's email: cjmeyer@uark.edu.

Abstract

As auxin-type herbicide-resistant crops become commercially available, nozzle selection will become a highly important variable for maintaining efficacy of herbicide solutions while minimizing off-target movement. Field experiments were conducted in 2013 and 2014 in Keiser, AR, to evaluate interactions among the N,N-bis-(aminopropyl)methylamine form of dicamba formulated as Engenia™, the potassium salt of glyphosate formulated as Roundup PowerMax®, and glufosinate formulated as Liberty® applied with three different nozzle types. Three TeeJet nozzles with an 11004 orifice (Turbo TeeJet [TT], Air Induction Extended Range [AIXR], and Turbo TeeJet Induction [TTI]) were used. To supplement the field data, droplet spectra for each nozzle and tank mixture combination were determined at the West Central Research and Extension Center in North Platte, NE. For most herbicide treatments and nozzle combinations, Palmer amaranth control 4 wk after treatment was > 95% both years. In 2013, TT nozzles provided 96% control of barnyardgrass and TTI nozzles provided 89% control, averaged across herbicides, except for Engenia alone. A similar effect of nozzle selection was observed in 2014. When treatments were applied to 20-cm-tall barnyardgrass in 2014, compared with 8-cm-tall plants in 2013, an antagonistic effect was observed when Engenia was tank-mixed with Roundup PowerMax. The weed control data correlated with the droplet spectrum analysis such that as volume median diameter (Dv50) increased from TT nozzles to the TTI nozzles, efficacy decreased for most tank mixtures. Results from the droplet analysis showed that Dv50 relative to water decreased for Liberty alone and not when tank-mixed with Engenia or Roundup PowerMax. These results suggest that nozzle selection will play a key role in maximizing efficacy of POST applications in dicamba-resistant crops. Additionally, evaluating droplet spectra of potential dicamba-containing tank mixtures is critical for producing desired droplet size to minimize off-target movement.

Al estar los cultivos resistentes a herbicidas de tipo auxinas comercialmente disponibles, la selección de la boquilla se convertirá en una variable altamente importante para mantener la eficacia de las soluciones de herbicidas y para minimizar el movimiento a lugares no deseados. Se realizaron experimentos de campo en 2013 y 2014 en Keiser, AR, para evaluar las interacciones entre la forma N,N-bis-(aminopropyl)metylamine de dicamba formulado como Engenia™, la sal de potassium de glyphosate formulado como Roundup PowerMax®, y glufosinate formulado como Liberty®, aplicados con tres tipos diferentes de boquillas. Se usaron tres boquillas TeeJet con un orificio 11004 (Turbo TeeJet [TT], Air Induction Extended Range [AIXR], y Turbo TeeJet Induction [TTI]). Para complementar los datos de campo, se determinó el espectro de gotas para cada combinación de boquilla y mezcla en tanque, en el Centro de Investigación y Extensión del Oeste Central, en North Platte, Nebraska. Para la mayoría de los tratamientos de combinaciones de herbicidas y boquillas, el control de Amaranthus palmeri, 4 semanas después del tratamiento, fue >95% en ambos años. En 2013, las boquillas TT brindaron 96% de control de Echinochloa crus-galli y las boquillas TTI brindaron 89% de control, al ser promediados los herbicidas, excepto por Engenia solo. Un efecto similar de la selección de boquilla fue observado en 2014. Cuando los tratamientos fueron aplicados a plantas de E. crus-galli de 20 cm de altura en 2014, en comparación con plantas de 8 cm de altura en 2013, se observó un efecto antagónico cuando Engenia fue mezclado en tanque con Roundup PowerMax. Los datos de control de malezas correlacionaron con el análisis de espectro de gotas, de tal forma que cuando el diámetro medio de volumen (Dv50) aumentó de boquillas TT a boquillas TTI, la eficacia disminuyó para la mayoría de las mezclas en tanque. Los resultados del análisis de gotas mostró que Dv50 relativo a agua disminuyó para Liberty solo y no para cuando se mezcló Engenia con Roundup PowerMax. Estos resultados sugieren que la selección de boquilla jugará un papel clave para maximizar la eficacia de aplicaciones POST en cultivos resistentes a dicamba. Adicionalmente, el evaluar el espectro de gota de mezclas en tanque potenciales que contengan dicamba es crítica para producir el tamaño de gota deseado y así minimizar el movimiento a lugares no deseados.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Prashant Jha, Montana State University.

References

Literature Cited

[ASABE] American Society of Agricultural and Biological Engineers (2009) Spray nozzle classification by droplet spectra. St. Joseph, MI: ASABE Standard S572.1. Pp 13 Google Scholar
Behrens R1 (1957) Influence of various components on the effectiveness of 2,4,5-T sprays. Weeds 5:183196 Google Scholar
Colby, SR (1967) Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:2022 Google Scholar
Coetzer, E, Al-Khatibb, K, Loughinc, TM (2001) Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci 49:813 Google Scholar
Creech, CF, Henry, RS, Fritz, BK, Kruger, GR (2015) Influence of herbicide active ingredient, nozzle type, orifice size, spray pressure, and carrier volume rate on spray droplet size characteristics. Weed Technol. 29:298310 Google Scholar
Culpepper, AS, York, AC, Steckel, LE, Bond, JA, Stephenson, D (2013) Palmer amaranth control significantly influenced by the time of day in which Liberty® is applied. Proc South Weed Sci Soc 66:168 Google Scholar
Egley, GH, Paul, RN Jr. (1976) Germination of developing prickly sida seeds. Weed Sci 24:239243 Google Scholar
Ennis, WB Jr., Williamson, RE (1963) Influence of droplet size on effectiveness of low-volume herbicidal sprays. Weeds 11:6772 Google Scholar
Etheridge, RE, Hart, WE, Hayes, RM, Mueller, TC (2001) Effect of Venturi-type nozzles and application volume on postemergence herbicide efficacy. Weed Technol 15:7580 Google Scholar
Feng, PC, Chiu, T, Sammons, RD, Ryerse, JS (2003) Droplet size affects glyphosate retention, absorption, and translocation in corn. Weed Sci 51:443448 Google Scholar
Flint, JL, Barrett, M (1989) Antagonism of glyphosate toxicity to johnsongrass (Sorghum halepense) by 2,4-D and dicamba. Weed Sci 37:700705 Google Scholar
Grangeot, M, Chauvel, B, Gauvrit, C (2006) Spray retention, foliar uptake and translocation of glufosinate and glyphosate in Ambrosia artemisiifolia . Weed Res 46:152162 Google Scholar
Holloway, PJ, Butler Ellis, MC, Webb, DA, Western, NM, Tuck, CR, Hayes, AL, Miller, PCH (2000) Effects of some agricultural tank-mix adjuvants on the deposition efficiency of aqueous sprays on foliage. Crop Prot 19:2737 Google Scholar
Jones, EJ, Hanks, JE, Wills, GD, Mack, RE (2007) Effect of two polysaccharide adjuvants on glyphosate spray droplet size and efficacy. Weed Technol 21:171174 Google Scholar
Lake, JR (1977) The effect of drop size and velocity on the performance of agricultural sprays. Pestic Sci 8:515520 Google Scholar
McKinlay, KS, Ashford, R, Ford, RJ (1974) Effects of drop size, spray volume, and dosage on paraquat toxicity. Weed Sci 22:3134 Google Scholar
McKinlay, KS, Brandt, SA, Morse, P, Ashford, R (1972) Droplet size and phytotoxicity of herbicides. Weed Sci 20:450452 Google Scholar
Miller, PC, Butler Ellis, MC (2000) Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Prot 19:609615 Google Scholar
Mueller, TC, Womac, AR (1997) Effect of formulation and nozzle type on droplet size with isopropylamine and trimesium salts of glyphosate. Weed Technol 11:639643 Google Scholar
Norsworthy, JK, Burgos, NR, Oliver, LR (2001) Differences in weed tolerance to glyphosate involve different mechanisms. Weed Technol 15:725731 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60(SI 1):3162 Google Scholar
Nuyttens, D, Baetens, K, De Schampheleire, M, Sonck, B (2007a) Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst Eng 97:333345 Google Scholar
Nuyttens, D, De Schampheleire, M, Baetens, K, Sonck, B (2007b) The influence of operator-controlled variables on spray drift from field crop sprayers. Trans Am Soc Agric Eng 50:11291140 Google Scholar
O'Sullivan, PA, O'Donovan, JT (1980) Interaction between glyphosate and various herbicides for broadleaved weed control. Weed Res 20:255260 Google Scholar
Ryerse, JS, Downer, RA, Sammons, D, Feng, PCC (2004) Effect of glyphosate spray droplets on leaf cytology in velvetleaf (Abutilon theophrasti) Weed Sci 52:302309 Google Scholar
Sellers, BA, Smeda, RJ, Johnson, WG (2003) Diurnal fluctuations and leaf angle reduce glufosinate efficacy. Weed Technol 17:302306 Google Scholar
Smith, DB, Askew, SD, Morris, WH, Shaw, DR, Boyette, M (2000) Droplet size and leaf morphology effects on pesticide spray deposition. Trans Am Soc Agric Eng 43:255259 Google Scholar
Smith, HH (1946) Quantitative aspects of aqueous-spray applications of 2,4-dichlorophenoxyacetic acid for herbicidal purposes. Bot Gaz 107:544551 Google Scholar
Spanoghe, P, De Schampheleire, M, Van, DM, Steurbaut, W (2007) Influence of agricultural adjuvants on droplet spectra. Pest Manag Sci 63:416 Google Scholar