Skip to main content Accessibility help
×
Home

Influence of Broadcast Spray Nozzle on the Deposition, Absorption, and Efficacy of Dicamba plus Glyphosate on Four Glyphosate-Resistant Dicot Weed Species

  • Travis R. Legleiter (a1), Bryan G. Young (a2) and William G. Johnson (a2)

Abstract

Dicamba-resistant soybean technology provides an additional site of action for POST control of herbicide-resistant broadleaf weeds in soybean but also raises concern of off-site movement and damage to sensitive crops in adjacent fields. Dicamba formulations approved for use on dicamba-resistant soybean require applicators to use nozzles producing large droplets to reduce the risk of spray-particle drift. The use of nozzles with relatively larger droplet spectra can reduce herbicide deposition on target weeds, especially if a filtering effect from the crop canopy occurs. Experiments were conducted to evaluate the influence of broadcast nozzle design on the deposition and efficacy of 280 g ha−1 glyphosate plus 140 g ha−1 dicamba applied POST to four herbicide-resistant weed species. The TTI11004 nozzle, the original nozzle labeled for dicamba applications on dicamba-resistant soybean, reduced deposition coverage and density on spray cards compared with the TT11004 and XR11004 nozzle. The AIXR11004 nozzle produces a very coarse droplet spectrum and did not reduce coverage on spray cards, though it did reduce deposition density. Herbicide solution deposition onto Palmer amaranth, tall waterhemp, giant ragweed, and horseweed ranged from 0.41 to 0.52, 0.55 to 0.87, 0.49 to 0.58, and 0.38 to 0.41 µl cm−2, respectively. Nozzle design and droplet spectrum did not influence the deposition of herbicide solution onto the target weed, as all nozzles were equivalent for all species and site-years. Herbicide efficacy was not influenced by nozzle design, as weed control and plant height reduction were similar for all species. The results of this experiment show that the use of the TTI11004 nozzle for dicamba applications to dicamba-resistant soybean will provide acceptable herbicide deposition and efficacy when applied under the label requirements of weed height and carrier volume.

Copyright

Corresponding author

Author for correspondence: T. R. Legleiter, P.O. Box 469, University of Kentucky Research and Education Center, Princeton, KY 42445. (Email: Travis.Legleiter@uky.edu)

References

Hide All
Abul-Fatih, HA, Bazzaz, FA (1979) The biology of Ambrosia trifida L. II. Germination, emergence, growth and survival. New Phytol 83:817827
Baysinger, JA, Sims, BD (1991) Giant ragweed (Ambrosia trifida) interference in soybeans (Glycine max). Weed Sci 39:358362
Behrens, MR, Mutlu, N, Chakraborty, S, Dumitru, R, Jiang, WZ, Lavallee, BJ, Herman, PL, Clemente, TE, Weeks, DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:11851188
Bode, L (1987) Spray application technology. Pages 85110 in McWorter G, Gebhardt MR, eds. Methods of Applying Herbicides. WSSA Monograph 4. Champaign, IL: WSSA
Bradley, K (2016). A season to remember: our experiences with off-target movement of dicamba in Missouri. Page 75 in Proceedings of the 2016 North Central Weed Science Society Annual Meeting. Des Moines, IA: North Central Weed Science Society
Bradley, KW, Sweets, LE (2008) Influence of glyphosate and fungicide coapplications on weed control, spray penetration, soybean response, and yield in glyphosate-resistant soybean. Agron J 100:1360
Carlsen, SK, Spliid, NH, Svensmark, B (2006) Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere 64:778786
Chang, FY, Vanden Born, WH (1971) Dicamba uptake, translocation, metabolism, and selectivity. Weed Sci 19:113117
Combellack, JH (1982) Loss of herbicides from ground sprayers. Weed Res 22:193204
Davis, VM, Johnson, WG (2008) Glyphosate-resistant horseweed (Conyza Canadensis) emergence, survival, and fecundity in no-till soybean. Weed Sci 56:231236
Dorr, G, Hanan, J, Adkins, S, Hewitt, A, O’Donnell, C, Noller, B (2008) Spray deposition on plant surfaces: a modelling approach. Funct Plant Biol 35:988996
Franssen, AS, Skinner, DZ, Al-khatib, K, Horak, MJ, Peter, A, Kulakow, PA (2001) Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Sci 49:598606
Fritz, B, Hoffmann, W, Jank, P (2011) A fluorescent tracer method for evaluating spray transport and fate of field and laboratory spray applications. J ASTM Int 8:19
Gibson, KD, Johnson, WG, Hillger, DE (2005) Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol 19:10651070
Heap, I (2017). International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: January 1, 2017
Hilz, E, Vermeer, AP (2013) Spray drift review: the extent to which a formulation can contribute to spray drift reduction. Crop Prot 44:7583
Johnson, B, Whitford, F, Weller, SC, Legleiter, T (2012) 2,4-D and Dicamba-Tolerant Crops—Some Factors to Consider. West Lafayette, IN: Purdue Extension ID-453-W
Johnson, B, Young, B, Matthews, J, Marquardt, P, Slack, C, Bradley, K, York, A, Culpepper, S, Hager, A, Al-Khatib, K, Steckel, L, Moechnig, M, Loux, M, Bernards, M, Smeda, R (2010). Weed control in dicamba-resistant soybeans. Online. Crop Manag 9:10.1094/CM-2010-0920-01 RS
Knoche, M (1994) Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot 13:163178
Kruger, GR, Johnson, WG, Doohan, DJ, Weller, SC (2012) Dose Response of glyphosate and dicamba on tomato (Lycopersicon esculentum) injury. Weed Technol 26:256260
Legleiter, TR, Bradley, KW, Massey, RE (2009) Glyphosate-resistant waterhemp (Amaranthus rudis) control and economic returns with herbicide programs in soybean. Weed Technol 23:5461
Legleiter, TR, Johnson, WG (2016) Herbicide coverage in narrow row soybean as influenced by spray nozzle design and carrier volume. Crop Prot 83:18
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162
Ramsdale, BK, Messersmith, CG (2001) Drift-reducing nozzle effects on herbicide performance. Weed Technol 15:453460
Robinson, AP, Simpson, DM, Johnson, WG (2013) Response of glyphosate-tolerant soybean yield components to dicamba exposure. Weed Sci 61:526536
Schwartz, LM, Norsworthy, JK, Young, BG, Bradley, KW, Kruger, GR, Davis, VM, Steckel, LE, Walsh, MJ (2016) Tall waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri) seed production and retention at soybean maturity. Weed Technol 30:284290
Sellers, BA, Smeda, RJ, Johnson, WG, Ellersieck, MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333
Webster, TM, Loux, MM, Regnier, EE, Harrison, SK (1994) Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol 8:559564
Van Wychen, L (2016). WSSA survey ranks Palmer amaranth as the most troublesome weed in the U.S., galium as the most troublesome in Canada (press release). http://wssa.net/2016/04/wssa-survey-ranks-palmer-amaranth-as-the-most-troublesome-weed-in-the-u-s-galium-as-the-most-troublesome-in-canada. Accessed: May 15, 2017

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed