Skip to main content Accessibility help

Increased Carrier Volume Improves Preemergence Control of Rigid Ryegrass (Lolium rigidum) in Zero-Tillage Seeding Systems

  • Catherine P. D. Borger (a1), Glen P. Riethmuller (a1), Michael Ashworth (a2), David Minkey (a3), Abul Hashem (a4) and Stephen B. Powles (a2)...


PRE herbicides are less effective in the zero-tillage system because of increased residual crop stubble and reduced soil incorporation. However, since weeds are not physically controlled in the zero-tillage system, reliance on efficacy of PRE herbicides is increased. This research investigated the impact of carrier volume and droplet size on the performance of PRE herbicides (in wheat crops at four sites in 2010) to improve herbicide efficacy in conditions of high stubble biomass in zero-tillage systems. Increasing carrier volume from 30 to 150 L ha−1 increased spray coverage on water-sensitive paper from an average of 5 to 32%. Average control of rigid ryegrass by trifluralin (at Cunderdin and Merredin sites) and trifluralin or pyroxasulfone (at Wickepin and Esperance sites) improved from 53 to 78% with increasing carrier volume. Use of ASABE Medium droplet size improved spray coverage compared with ASABE Extremely Coarse droplet size, but did not affect herbicide performance. It is clear that increased carrier volume improves rigid ryegrass weed control for nonwater-soluble (trifluralin) and water-soluble (pyroxasulfone) PRE herbicides. Western Australian growers often use low carrier volumes to reduce time of spray application or because sufficient high-quality water is not available, but the advantages of improved weed control justifies the use of a high carrier volume in areas of high weed density.

Los herbicidas PRE son menos efectivos en sistemas de labranza cero debido a su menor incorporación en el suelo y la mayor cantidad de residuos de cultivo. Sin embargo, como las malezas no son controladas físicamente en los sistemas de labranza cero, la dependencia en la eficacia de herbicidas PRE es mayor. Se investigó el impacto del volumen de aplicación y el tamaño de gota en el desempeño de los herbicidas PRE (en cultivos de trigo en cuatro localidades en 2010) para mejorar la eficacia de herbicidas en condiciones de alta biomasa de residuos de cultivo en sistemas de labranza cero. El incrementar el volumen de aplicación de 30 a 150 L ha−1 aumentó la cobertura de la aplicación, medida con papel sensible al agua, de 5 a 32%. El control promedio de Lolium rigidum con trifluralin (en las localidades Cunderdin y Merredin) y trifluralin o pyroxasulfone (en Wickepin y Esperance) mejoró de 53 a 78% al incrementar el volumen de aplicación. El uso de gotas ASABE de tamaño mediano mejoró la cobertura de la aspersión al compararse con gotas ASABE extremadamente grandes, pero no afectó el desempeño del herbicida. Está claro que el incrementar el volumen de aplicación mejoró el control de L. rigidum con herbicidas PRE insolubles en agua (trifluralin) y solubles en agua (pyroxasulfone). Los productores del Oeste de Australia usan frecuentemente volúmenes bajos de aplicación para reducir el tiempo de aplicación o porque no hay suficiente agua de alta calidad disponible, pero las ventajas del mayor control de malezas justifica el uso de altos volúmenes de aplicación en áreas con alta densidad de malezas.


Corresponding author

Corresponding author's E-mail:


Hide All
American Society of Agricultural and Biological Engineers. 2009. Spray nozzle classification by droplet spectra. St. Joseph, MI ASABE Standards. Pp. 13.
Anderson, N. H., Hall, D. J., and Western, N. M. 1983. The role of dynamic surface tension in spray retention. Page 576 in Proceedings of the 10th International Congress of Plant Protection.
Ashworth, M., Desbiolles, J., and Tola, E. 2010. Disc Seeding in Zero-Tillage Farming Systems. A Review of Technology and Paddock Issues. Northam, Western Australia Western Australian No-Tillage Farmers Association. Pp. 1223.
Australian Pesticides and Veterinary Medicines Authority. 2011. Public Release Summary on the Evaluation of the New Active Pyroxasulfone in the Product Sakura® 850 WG Herbicide. Accessed March 9, 2013.
Bayer CropScience. 2011. Sakura® 850 WG Herbicide. Accessed April 12, 2012.
Boerboom, C. M. and Wyse, D. L. 1988. Influence of glyphosate concentration on glyphosate absorption and translocation in canada thistle (Cirsium arvense). Weed Sci. 36:291295.
Bureau of Meteorology. 2011. Climate Statistics for Australian Locations. Accessed October 12, 2011.
Chan, K. Y. and Pratley, J. E. 1998. Soil structure decline—Can the trend be reversed?. Pages 129163 in Pratley, J. and Robertson, A., eds. Agriculture and the Environmental Imperative. Sydney, Australia CSIRO Publishing.
Corning, P. S. and Pratley, J. E. 1987. Tillage, new directions in Australian agriculture. Melbourne, Australia Inkata Press. Pp. 438440.
[CSBP] CSBP Ltd. 2010. CSBP Soil and Plant Testing Laboratory: Methods. Perth, Australia CSBP. Pp. 111.
Dear, B. S., Sandral, G. A., and Wilson, B.C.D. 2006. Tolerance of perennial pasture grass seedlings to pre- and postemergent grass herbicides. Aust. J. Exp. Agric. 46:637644.
D'Emden, F. H., Llewellyn, R. S., and Burton, M. P. 2008. Factors influencing adoption of conservation tillage in Australian cropping regions. Aust. J. Agric. Resour. Econ. 52:169182.
D'Emden, F.H.D. and Llewellyn, R. S. 2006. No-tillage adoption decisions in southern Australian cropping and the role of weed management. Aust. J. Exp. Agric. 46:563569.
Fox, R. D., Derksen, R. C., Cooper, J. A., Krause, C. R., and Ozkan, H. E. 2003. Visual and image system measurement of spray deposits using water-sensitive paper. Appl. Eng. Agric. 19:549552.
Hoffman, W. C. and Hewitt, A. J. 2005. Comparison of three imaging systems for water-sensitive papers. Appl. Eng. Agric. 21:961964.
Hollist, R. L. and Foy, C. L. 1971. Trifluralin interaction with soil constituents. Weed Sci. 19:1116.
Jensen, P. K., Jorgensen, L. N., and Kirknel, E. 2001. Biological efficacy of herbicides and fungicides applied with low-drift and twin-fluid nozzles. Crop Prot. 20:5764.
Kenga, E. 1980. Predicted bio-concentration factors and soil sorption co-efficients of pesticides and other chemicals. Ecotoxicol. Environ. Saf. 4:2638.
Knoche, M. 1994. Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot. 13:163178.
Kudsk, P. 1988. The influence of volume rate on the activity of glyphosate and difenzoquat assessed by a parallel-line assay technique. Pestic. Sci. 24:2129.
Lamari, L. 2008. Assess 2.0 Image Analysis Software for Disease Quantification. Saint Paul, MN American Phytopathological Society. Pp. 1125.
Lewis, K. and Green, A. 2013. The Pesticides Properties Database: Trifluralin. Accessed March 9, 2013.
Lignowski, E. M. and Scott, E. G. 1972. Effect of trifluralin on mitosis. Weed Sci. 20:267270.
Merrett, C. R. 1982. The influence of form of deposit on the phytotoxicity of MCPA, paraquat, and glyphosate applied as individual drops. Ann. Appl. Biol. 101:527532.
Noel, S. 2002. Soil Groups of Western Australia: A Simple Guide to the Main Soils of Western Australia. Perth Department of Agriculture, Government of Western Australia. Pp. 1122.
Nordbo, E. 1992. Effects of nozzle size, travel speed and air assistance on deposition on artificial vertical and horizontal targets in laboratory experiments. Crop Prot. 11:272278.
Nufarm Australia. 2009. Triflur Xcel® herbicide product label. Nufarm Australia Limited. Accessed August 8, 2012.
Owen, M. J., Walsh, M. J., Llewellyn, R. S., and Powles, S. B. 2007. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agr. Res. 58:711718.
Parochetti, J. V. and Hein, E. R. 1973. Volatility and photodecomposition of trifluralin, benefin and nitralin. Weed Sci. 21:469473.
Permin, O., Odgaard, P., and Kirknel, E. 1985. Deposition of spray liquid in a plant population. Pages 99117 in Proceedings of the Second Danish Plant Protection Conference. Weeds. Sladelse, Denmark Institut fur Ukrudsbekæmpelse.
Rahman, A. and Ashford, R. 1970. Selective action of trifluralin for control of green foxtail in wheat. Weed Sci. 18:754759.
Salyani, M. and Whitney, J. D. 1990. Ground speed effect on spray deposition inside citrus trees. T. ASAE. 33:361366.
Spillman, J. J. 1984. Spray impaction, retention and adhesion: an introduction to basic characteristics. Pestic. Sci. 15:97106.
Tennant, D. 2000. Crop water use. Pages 5568 in Anderson, W. K. and Garlinge, J. R., eds. The Wheat Book: Principles and Practice. Perth Agriculture Western Australia.
Thériault, R., Salyani, M., and Panneton, B. 2001. Spray distribution and recovery in citrus application with a recycling sprayer. T. ASAE. 44:10831088.
Travis, J. W., Skroch, W. A., and Sutton, T. B. 1987. Effects of travel speed, application volume, and nozzle arrangement on deposition and distribution of pesticides in apple trees. Plant Dis. 71:606612.
VSN International. 2011. GenStat for Windows. 14th ed. Hemel Hempstead, UK VSN International. Pp. 1360.
Walsh, M. J., Fowler, T. M., Crowe, B., Ambe, T., and Powles, S. B. 2011. The potential for pyroxasulfone to selectively control resistant and susceptible rigid ryegrass (Lolium rigidum) biotypes in Australian grain crop production systems. Weed Technol. 25:3037.
Whitney, J. D., Salyani, M., Churchill, D. B., Knapp, J. L., Whiteside, J. O., and Littell, R. C. 1989. A field investigation to examine the effects of sprayer type, ground speed, and volume rate on spray deposition in Florida citrus. J. Agric. Eng. Res. 42:275283.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed