Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T15:51:40.287Z Has data issue: false hasContentIssue false

Identification of a Tall Waterhemp (Amaranthus tuberculatus) Biotype Resistant to HPPD-Inhibiting Herbicides, Atrazine, and Thifensulfuron in Iowa

Published online by Cambridge University Press:  20 January 2017

Patrick M. McMullan*
Affiliation:
Crop Genetics Research and Development, Pioneer Hi-Bred International, 7300 NW 62nd Avenue, Johnston, IA 50131-1004
Jerry M. Green
Affiliation:
DuPont Agricultural Biotechnology, Pioneer Hi-Bred International, Stine-Haskell Research Center Building 210, Newark, DE 19714-0030
*
Corresponding author's: E-mail: patrick.mcmullan@pioneer.com

Abstract

Seeds of a putative 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide–resistant tall waterhemp biotype from Henry County, IA, were collected from a seed corn field in fall 2009 after plants were not controlled following a POST application of mesotrione plus atrazine. The response of this biotype to various herbicide modes of action was evaluated in greenhouse and field tests. Under greenhouse conditions, the suspect biotype showed an eightfold decrease in sensitivity to mesotrione with a 50% control rate of 21 g ha−1 compared with 2.7 g ha−1 for the susceptible biotype. The biotype also had a 10-fold decrease in sensitivity to atrazine and a 28-fold decrease in sensitivity to thifensulfuron. Under field conditions, tall waterhemp was not controlled POST at the label rate of 1,100 g ha−1 of atrazine. Tall waterhemp control was less than 60% at the label rates of three commonly used POST HPPD-inhibiting herbicides in seed corn: 105 g ha−1 of mesotrione, 92 g ha−1 of tembotrione, or 18 g ha−1 of topramezone. Thus, this new tall waterhemp biotype is resistant to three herbicide modes of action: HPPD inhibitors, photosystem-II inhibitors, and acetolactate synthase (ALS) inhibitors.

En otoño de 2009 en un campo de maíz del condado de Henry, IA se colectaron semillas de un biotipo de Amaranthus tuberculatus presumiblemente resistente a un conocido herbicida inhibidor de HPPD; esto, después de que las plantas no se controlaron con una aplicación POST de mesotrione más atrazina. La respuesta de este biotipo a varios herbicidas con diferentes modos de acción se evaluó en estudios de invernadero y de campo. Bajo condiciones de invernadero, el biotipo sospechoso mostró ocho veces de disminución en su sensibilidad al mesotrione con un 50% de control a una dosis de 21 g ha−1, comparado con 2.7 g ha−1 para el biotipo susceptible. El biotipo tuvo también un decremento de 10 veces la sensibilidad a atrazina y 28 veces la sensibilidad a thifensulfuron. Bajo condiciones de campo, Amaranthus tuberculatus no fue controlada POST a una dosis recomendada de 1100 g ha−1 de atrazina. El control de ésta maleza fue menor de 60% a la dosis recomendada de tres herbicidas inhibidores de HPPD comúnmente usados POST en semilla de maíz, mesotrione a 105 g ha−1, tembotrione a 92 g ha−1 o topramezone a 18 g ha−1. Por lo tanto, este nuevo biotipo de Amaranthus tuberculatus es resistente a tres modos de acción de herbicidas: inhibidores HPPD, inhibidores de la fotosíntesis II e inhibidores de acetolactato sintetasa (ALS).

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Boerboom, C. M. 1999. Nonchemical options for delaying weed resistance to herbicides in Midwest cropping systems. Weed Technol. 13:636642.CrossRefGoogle Scholar
Cordes, J. C., Johnson, W. G., Scharf, P., and Smeda, R. J. 2004. Late-emerging common waterhemp (Amaranthus rudis) interference in conventional tillage corn. Weed Technol. 18:9991005.Google Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.Google Scholar
Green, J. M. 1998. Differential tolerance of corn (Zea mays) inbreds to four sulfonylurea herbicides and bentazon. Weed Technol. 12:474477.Google Scholar
Hartzler, R. G., Buhler, D. D., and Stoltenberg, D. E. 1999. Emergence characteristics of four annual weed species. Weed Sci. 47:578584.Google Scholar
Hausman, N. E., Singh, S., Tranel, P. J., Riechers, D. E., Kaundun, S. S., Polge, N. D., Thomas, D. A., and Hager, A. G. 2011. Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Manag. Sci 67:258261.CrossRefGoogle Scholar
Heap, I. 2011. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: March 14, 2011.Google Scholar
Hinz, J. R. R. and Owen, M. D. K. 1997. Acetolactase synthase resistance in a common waterhemp (Amaranthus rudis) population. Weed Technol. 11:1318.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48:347355.Google Scholar
Johnson, B., Barnes, J., Gibson, K., and Weller, S. 2004. Late-Season Weed Escapes in Indiana Soybean Fields. http://www.plantmanagementnetwork.org. Accessed: October 2010.Google Scholar
Michaeley, W. J. and Kratz, G. W., inventors, Stauffer Chemical Company, assignee. 1988 Oct 25. Certain 2-(2-substituted benzoyl)-1,3-cyclohexanediones. U.S. patent 4,780,127.Google Scholar
Nordby, D. E. and Hartzler, R. G. 2004. Influence of corn on common waterhemp (Amaranthus rudis) growth and fecundity. Weed Sci. 52:255259.Google Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53:3036.CrossRefGoogle Scholar
Sarpe, N., Negrila, E., Popescu, A., Barbu, V., Bodescu, F., and Roibu, C. 1996. Studies of the resistance of different inbred lines and maize hybrids to imazethapyr, dicamba + 2,4-D, dimethenamide, rimsulfuron, primisulfuron and nicosulfuron. Pages 10831088 in Procedings of the Second International Weed Control Congress. Copenhagen, Denmark Department of Weed Control and Pesticide Ecology.Google Scholar
Steckel, L. E. and Sprague, C. L. 2004. Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci. 52:359364.Google Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose-response curves and statistical methods. Pages 3055 in Streibig, J. C., and Kudsk, P., eds. Herbicide Bioassays. Boca Raton, FL CRC.Google Scholar
Sutton, P., Richards, C., Buren, L., and Glasgow, L. 2002. Activity of mesotrione on resistant weeds in maize. Pest Manag. Sci. 58:981984.Google Scholar
Tranel, P. J., Riggins, C. W., Bell, M. S., and Hager, A. G. 2011. Herbicide resistance in Amaranthus tuberculatus: a call for new options. J. Agric. Food Chem. DOI: 10.1021/jf103797nGoogle Scholar
Vyn, J. D., Swanton, C. J., Weaver, S. E., and Sikkema, P. H. 2006. Control of Amaranthus tuberculatus var. rudis (common waterhemp) with pre and post emergence herbicides in Zea mays L. (maize). Crop Prot. 35:10511056.Google Scholar