Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T11:23:50.585Z Has data issue: false hasContentIssue false

Growth Stage-Influenced Differential Response of Foxtail and Pigweed Species to Broadcast Flaming

Published online by Cambridge University Press:  20 January 2017

Santiago M. Ulloa
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska, Northeast Research and Extension Center, 57905 866 Road, Concord, NE 68728-2828
Avishek Datta
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska, Northeast Research and Extension Center, 57905 866 Road, Concord, NE 68728-2828
Stevan Z. Knezevic*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska, Northeast Research and Extension Center, 57905 866 Road, Concord, NE 68728-2828
*
Corresponding author's E-mail: sknezevic2@unl.edu.

Abstract

Propane flaming could be an effective alternative tool for weed control in organic cropping systems. However, response of major weeds to broadcast flaming must be determined to optimize its proper use. Therefore, field experiments were conducted at the Haskell Agricultural Laboratory, Concord, NE in 2007 and 2008 using six propane doses and four weed species, including green foxtail, yellow foxtail, redroot pigweed, and common waterhemp. Our objective was to describe dose–response curves for weed control with propane. Propane flaming response was evaluated at three different growth stages for each weed species. The propane doses were 0, 12, 31, 50, 68, and 87 kg ha−1. Flaming treatments were applied utilizing a custom-built flamer mounted on a four-wheeler (all-terrain vehicle) moving at a constant speed of 6.4 km h−1. The response of the weed species to propane flaming was evaluated in terms of visual ratings of weed control and dry matter recorded at 14 d after treatment. Weed species response to propane doses were described by log-logistic models relating propane dose to visual ratings or plant dry matter. Overall, response of the weed species to propane flaming varied among species, growth stages, and propane dose. In general, foxtail species were more tolerant than pigweed species. For example, about 85 and 86 kg ha−1 were the calculated doses needed for 90% dry matter reduction in five-leaf green foxtail and four-leaf yellow foxtail compared with significantly lower doses of 68 and 46 kg ha−1 of propane for five-leaf redroot pigweed and common waterhemp, respectively. About 90% dry matter reduction in pigweed species was achieved with propane dose ranging from 40 to 80 kg ha−1, depending on the growth stage when flaming was conducted. A similar dose of 40 to 60 kg ha−1 provided 80% reduction in dry matter for both foxtail species when flaming was done at their vegetative growth stage. However, none of the doses we tested could provide 90% dry matter reduction in foxtail species at flowering stage. It is important to note that foxtail species started regrowing 2 to 3 wk after flaming. Broadcast flaming has potential for control or suppression of weeds in organic farming.

Quemar utilizando gas propano puede ser una herramienta alterna efectiva para el control de malezas en sistemas de cultivo orgánico. Sin embargo, la respuesta de las malezas más comunes a este sistema debe determinarse para poder optimizar su uso. Por lo tanto, se realizaron estudios de campo en el Laboratorio Agrícola Haskell en Concord, NE in 2007 y 2008 usando seis difernetes dosis de propano y cuatro especies de maleza que incluyen Setaria viridis (L.) Beauv., Setaria pumila (Poir.), Amaranthus retroflexus L y Amaranthus rudis Sauer. Nuestro objetivo fue describir las curvas de dosis-respuesta para el control de malezas con propano. La respuesta a la quema con propano se evaluó en tres diferentes etapas de crecimiento para cada especie de maleza. Las dosis de propano fueron 0, 12, 31, 50, 68, y 87 kg ha−1. Los tratamientos se aplicaron utilizando un flameador hecho a la medida montado en un ATV de 4 ruedas moviéndose a una velocidad constante de 6.4 km h−1. La respuesta de las especies de malezas a la quema con propano se evaluó en términos de apreciación visual de control de malezas y de materia seca registrada a los 14 días después del tratamiento. La respuesta de las especies de malezas a las dosis de propano se describió mediante modelos log-logísticos relacionando la dosis de propano a la apreciación visual o a la materia seca de la planta. Generalmente, la respuesta de las especies de maleza a la quema con propano varió entre especies, etapas de crecimiento y las dosis del gas. En general, las especies de Setaria fueron más tolerantes que las de Amaranthus retroflexus L. Por ejemplo, cerca de 85 y 86 kg ha−1 fueron las dosis necesarias calculadas para un 90% de reducción en la materia seca en la etapa de 5 hojas de Setaria viridis (L.) Beauv y de 4-hojas en Setaria pumila (Poir.), comparada a dosis significativamente más bajas de 68 y 46 kg ha−1 de propano, para la etapa de 5 hojas de la Amaranthus retroflexus L y de la Amaranthus rudis, respectivamente. Cerca del 90% de reducción en Amaranthus retroflexus L. se alcanzó con dosis de propano que iban entre 40 a 80 kg ha−1, dependiendo de la etapa de crecimiento cuando la quema se aplicó. Una dosis similar de 40 a 60 kg ha−1 proporcionó 80% de reducción en materia seca para ambos tipos de Setaria cuando la eliminación con propano se aplicó en su etapa de crecimiento vegetativo. Sin embargo, ninguna de estas dosis que se probaron podrían proporcionar 90% de reducción de materia seca en las especies de Setaria en la etapa de floración. Es importante hacer notar que los tipos de Setaria comenzaron a crecer nuevamente de 2 a 3 semanas después de la quema. Este sistema tiene un potencial para controlar o suprimir las malezas en cultivos orgánicos.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ascard, J. 1990. Thermal weed control with flaming in onions. Pages 175188. in. Proceedings of the 3rd International Conference on Non-chemical Weed Control. Linz, Austria:.Google Scholar
Ascard, J. 1994. Dose–response models for flame weeding in relation to plant size and density. Weed Res 34:377385.Google Scholar
Ascard, J. 1995. Effects of flame weeding on weed species at different developmental stages. Weed Res 35:397411.Google Scholar
Ascard, J. 1998. Comparison of flaming and infrared radiation techniques for thermal weed control. Weed Res 38:6976.Google Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. E. 2003. Interference of redroot pigweed, Palmer amaranth, and common waterhemp in soybean. Weed Sci 51:3743.Google Scholar
Bridges, D. C. 1992. Crop Losses Due to Weeds in the United States, 1992. Champaign, IL: Weed Science Society of America. 403.Google Scholar
Cisneros, J. J. and Zandstra, B. H. 2008. Flame weeding effects on several weeds species. Weed Technol 22:290295.CrossRefGoogle Scholar
Domingues, A. C., Ulloa, S. M., Datta, A., and Knezevic, S. Z. 2008. Weed response to broadcast flaming. RURALS. http://digitalcommons.unl.edu/rurals/vol3/iss1/2. Accessed: September 12, 2009.Google Scholar
Greene, C. 2009. Organic Production. United States Department of Agriculture-Economic Research Service. http://www.ers.usda.gov/Data/Organic/. Accessed: July 30, 2009.Google Scholar
Harris, T. C. and Ritter, R. L. 1987. Giant green foxtail (Setaria viridis var. major) and fall panicum (Panicum dichotomiflorum) competition in soybeans (Glycine max). Weed Sci 35:663668.Google Scholar
Johnson, W. C. 2004. Weed control with organic production. Pages 1314. in. Proceedings of the Southeast Regional Fruit and Vegetable Conference. Savannah, GA:.Google Scholar
Knezevic, S. Z. 2009. Flaming: A New Weed Control Tool in Organic Crops. Crop Watch, University of Nebraska-Lincoln Extension. http://cropwatch.unl.edu/archives/2009/crop17/organic_flaming.htm. Accessed: July 30, 2009.Google Scholar
Knezevic, S. Z., Costa, C. M., Ulloa, S. M., and Datta, A. 2009a. Response of corn (Zea mays L.) types to broadcast flaming. Pages 9297. in. Proceedings of the 8th European Weed Research Society Workshop on Physical and Cultural Weed Control. Zaragoza, Spain:.Google Scholar
Knezevic, S. Z., Dana, L., Scott, J. E., and Ulloa, S. M. 2007a. Building a research flamer. Proc. North Cent. Weed Sci. Soc 62:32.Google Scholar
Knezevic, S. Z., Datta, A., and Ulloa, S. M. 2009b. Growth stage impacts tolerance to broadcast flaming in agronomic crops. Pages 8691. in. Proceedings of the 8th European Weed Research Society Workshop on Physical and Cultural Weed Control. Zaragoza, Spain:.Google Scholar
Knezevic, S. Z., Datta, A., and Ulloa, S. M. 2009c. Tolerance of selected weed species to broadcast flaming at different growth stages. Pages 98103. in. Proceedings of the 8th European Weed Research Society Workshop on Physical and Cultural Weed Control. Zaragoza, Spain:.Google Scholar
Knezevic, S. Z., Horak, M. J., and Vanderlip, R. L. 1997. Relative time of redroot pigweed (Amaranthus retroflexus L.) emergence is critical in pigweed–sorghum [Sorghum bicolor (L.) Moench] competition. Weed Sci 45:502508.Google Scholar
Knezevic, S. Z., Streibig, J., and Ritz, C. 2007b. Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol 21:840848.Google Scholar
Knezevic, S. Z. and Ulloa, S. M. 2007. Propane flaming: potential new tool for weed control in organically grown agronomic crops. J. Agric. Sci 52:95104.Google Scholar
Knezevic, S. Z., Weise, S. F., and Swanton, C. J. 1994. Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Sci 42:568573.CrossRefGoogle Scholar
Lague, C., Gill, J., Lehoux, N., and Peloquin, G. 1997. Engineering performances of propane flamers used for weed, insect pest, and plant disease control. Appl. Eng. Agric 13:716.CrossRefGoogle Scholar
Lague, C., Gill, J., and Peloquin, G. 2001. Thermal control in plant protection. Pages 3546. in Vincent, C., Panneton, B., and Fleurat-Lessard, F. eds. Physical Control Methods in Plant Protection. Berlin, Germany: Springer-Verlag.Google Scholar
Leroux, G. D., Douheret, J., and Lanouette, M. 2001. Flame weeding in corn. Pages 4760. in Vincent, C., Panneton, B., and Fleurat-Lessard, F. eds. Physical Control Methods in Plant Protection. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Morelle, B. 1993. Thermal weed control and its application in agriculture and horticulture. Pages 111116. in. Communications of the 4th International Conference IFOAM, Nonchemical Weed Control. Dijon, France:.Google Scholar
Nemming, A. 1994. Costs of flame cultivation. Acta Hort 372:205212.CrossRefGoogle Scholar
Parish, S. 1990. A review of non-chemical weed control techniques. Biol. Agric. Hort 7:117137.Google Scholar
Pelletier, Y., McLeod, C. D., and Bernard, G. 1995. Description of sub-lethal injuries caused to the Colorado potato beetle by propane flamer treatment. J. Econ. Entomol 88:12031205.CrossRefGoogle Scholar
Rifai, M. N., Lacko-Bartosova, M., and Puskarova, V. 1996. Weed control for organic vegetable farming. Rostl. Vyr 42:463466.Google Scholar
SAS Institute 2005. Version 9.1. The GLIMMIX procedure. Online documentation. Cary, NC: SAS Institute.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol 9:218227.CrossRefGoogle Scholar
Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 51:145150.Google Scholar
Sivesind, E. C., Leblanc, M. L., Cloutier, D. C., Seguin, P., and Stewart, K. A. 2009. Weed response to flame weeding at different developmental stages. Weed Technol 23:438443.Google Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose–response curves and statistical models. Pages 2955. in Streibig, J. C. and Kudsk, P. eds. Herbicide Bioassay. Boca Raton, FL: CRC Press.Google Scholar
Teixeira, H. Z., Ulloa, S. M., Datta, A., and Knezevic, S. Z. 2008. Corn (Zea mays) and soybean (Glycine max) tolerance to broadcast flaming. RURALS. http://digitalcommons.unl.edu/rurals/vol3/iss1/1. Accessed: September 12, 2009.Google Scholar
Walz, E. 1999. Final Results of the Third Biennial National Organic Farmers' Survey. Santa Cruz, CA: Organic Farming Research Foundation. 126.Google Scholar
Wszelaki, A. L., Doohan, D. J., and Alexandrou, A. 2007. Weed control and crop quality in cabbage [Brassica oleracea (capitata group)] and tomato (Lycopersicon licopersicum) using a propane flamer. Crop Prot 26:134144.Google Scholar