Skip to main content Accessibility help
×
Home

Germination of Various Weed Species in Response to Vetiver Oil and Nootkatone

  • Lixin Mao (a1), Gregg Henderson (a1) and Roger A. Laine (a2)

Abstract

Germination experiments were conducted in petri dishes to test the effect of vetiver oil and one of its minor components, nootkatone, on six common weed species. Vetiver oil inhibited germination of redroot pigweed, common lambsquarters, giant ragweed, pitted morningglory, and velvetleaf. Nootkatone, at much higher concentrations than it occurs in the oil, exhibited germination inhibition for all weed species except velvetleaf. Redroot pigweed was the most sensitive species with germination inhibition at 0.1 to 1.0 mg/ml of vetiver oil and nootkatone. At 1.0 to 8.0 mg/ml, nootkatone reduced germination of giant ragweed by 24 to 92%, whereas vetiver oil reduced the germination only by 6 to 11%. Vetiver oil and nootkatone also inhibited seedling expansion of redroot pigweed and common lambsquarters. No significant inhibition of germination and seedling expansion was found for sicklepod. These laboratory studies provide preliminary evidence that nootkatone and vetiver oil may have use as herbicides.

Copyright

Corresponding author

Corresponding author's E-mail: grhenderson@agcenter.lsu.edu

References

Hide All
Andersen, N. H. 1970. Biogenetic implications of the antipodal sesquiterpenes of vetiver oil. Phytochemistry. 9:145151.
Chandler, J. M. 1991. Estimated losses of crops to weeds. in Pimentel, D., ed. CRC Handbook of Pest Management in Agriculture, Volume 1. Boca Raton, FL: CRC Press. Pp. 5365.
Chou, C-H. 1995. Allelopathy and sustainable agriculture. in Inderjit, K.M.M. Dakshini, and Einhellig, F. A., eds. Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582. Washington, DC: American Chemical Society. Pp. 211223.
Dornbos, D. L. Jr. and Spencer, G. F. 1990. Natural products phytotoxicity: a bioassay suitable for small quantities of slightly water-soluble compounds. J. Chem. Ecol. 16:339353.
Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E., and Lerner, H. R. 1999. Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 25:10791089.
Duke, S. O. 1990. Natural pesticides from plants. in Janick, J. and Simon, J. E., eds. Advances in New Crops. Portland, OR: Timber Press. Pp. 511517.
Duke, S. O. and Abbas, H. K. 1995. Natural products with potential use as herbicides. in Inderjit, K.M.M. Dakshini, and Einhellig, F. A., eds. Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582. Washington, DC: American Chemical Society. Pp. 348362.
Einhellig, F. A. 1995. Allelopathy: current states and future goals. in Inderjit, K.M.M. Dakshini, and Einhellig, F. A., eds. Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582. Washington, DC: American Chemical Society. Pp. 124.
Erdtman, H. and Hirose, Y. 1962. The chemistry of the natural order Cupressales: 46. The structure of nootkatone. Acta Chem. Scand. 16:13111314.
Finney, D. J. 1971. Probit Analysis. London: Cambridge University Press. 333 p.
Fischer, N. H. 1986. The function of mono and sesquiterpenes as plant germination and growth regulators. in Putnam, A. R. and Tang, C.-S., eds. The Science of Allelopathy. New York: Wiley-Interscience Publication. Pp. 203218.
Jain, S. C., Nowicki, S., Eisner, T., and Meinwald, J. 1982. Insect repellents from vetiver oil: 1. Zizanal and epizizanal. Tetrahedron Lett. 23:46394642.
Kaiser, R. and Naegeli, P. 1972. Biogenetically significant components in vetiver oil. Tetrahedron Lett. 20:20092012.
Kelly, S., Sanders, D. E., Lencse, R. J., Koske, T., Cannon, J. M., Boudreaux, J. E., Owings, A. D., and Strahan, R. 2003. Louisiana Suggested Chemical Weed Control Guide for 2003. Baton Rouge, LA: Louisiana Cooperative Extension Service, Louisiana State University. Publication 1565. 134 p.
Knezevic, S. E., Weise, S. F., and Swanton, C. J. 1994. Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Sci. 42:568573.
Kobaisy, M., Tellez, M. R., Webber, C. L., Dayan, F. E., Schrader, K. K., and Wedge, D. E. 2001. Phytotoxic and fungitoxic activities of the essential oil of kenaf (Hibiscus cannabinus L.) leaves and its composition. J. Agric. Food Chem. 49:37683771.
Komai, K. and Tang, C-S. 1989. Chemical constituents and inhibitory activities of essential oils from Cyperus brevifolius and C. kyllingia . J. Chem. Ecol. 15:21712176.
Lemberg, S. and Hale, R. B. 1978. Vetiver oils of different geographical origins. Perfum. Flavor. 3:2327.
Maistrello, L., Henderson, G., and Laine, R. A. 2001a. Effects of nootkatone and borate compound on Formosan subterranean termite (Isoptera: Rhinotermitidae) and its symbiont protozoa. J. Entomol. Sci. 36:229236.
Maistrello, L., Henderson, G., and Laine, R. A. 2001b. Efficacy of vetiver oil and nootkatone as soil barriers against Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 94:15321537.
Mitich, L. W. 1997. Redroot pigweed (Amaranthus retroflexus). Weed Technol. 11:199202.
National Research Council. 1993. Vetiver Grass: A Thin Line Against Erosion. Washington, DC: National Academy Press. 171 p.
Oda, J., Ando, N., Nakajima, M., and Inouye, Y. 1977. Studies on insecticidal constituents of Juniperus recurva . Buch. Agric. Biol. Chem. 41:201201.
Owen, M. D. K. 2001. World maize/soybean and herbicide resistance. in Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. Boca Raton, FL: CRC Press. Pp. 101163.
Putnam, A. R. and Tang, C-S. 1986. Allelopathy: State of the science. in Putnam, A. R. and Tang, C.-S., eds. The Science of Allelopathy. New York: J. Wiley. Pp. 119.
Reigosa, M. J., Souto, X. C., and Gonzalez, L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 28:8388.
Romagni, J. G., Allen, S. N., and Dayan, F. E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26:303313.
Shaw, P. E. and Wilson, C. W. III. 1981. Importance of nootkatone to the aroma of grapefruit oil and the flavor of grapefruit juice. J. Agric. Food Chem. 29:677679.
Tellez, M. R., Dayan, F. E., Schrader, K. K., Wedge, D. E., and Duke, S. O. 2000. Composition and some biological activities of the essential oil of Callicarpa americana (L). J. Agric. Food Chem. 48:30083012.
Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50:425431.
Wall, D. A. 1995. Bentazon tank-mixtures for improved redroot pigweed (Amaranthus retroflexus) and common lambsquarters (Chenopodium album) control on navy bean (Phaseolus vulgaris). Weed Technol. 9:610616.
Weyerstahl, P., Marschall, H., Splittgerber, U., and Wolf, D. 1996. New sesquiterpene ethers from vetiver oil. Liebigs Ann. 1996:11951199.
Weyerstahl, P., Marschall, H., Splittgerber, U., Wolf, D., and Surburg, H. 2000. Constituents of Haitian vetiver oil. Flavour Fragrance J. 15:395412.
Wyse, D. L. 1994. New technologies and approaches for weed management in sustainable agriculture systems. Weed Technol. 8:403407.
Zhu, B. C. R., Henderson, G., Chen, F., Fei, H., and Laine, R. A. 2001a. Evaluation of vetiver oil and seven insect-active essential oils against Formosan subterranean termites. J. Chem. Ecol. 27:16171625.
Zhu, B. C. R., Henderson, G., Chen, F., Maistrello, L., and Laine, R. A. 2001b. Nootkatone is a repellent for Formosan subterranean termite (Coptotermes formosanus). J. Chem. Ecol. 27:523531.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed