Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T04:43:45.291Z Has data issue: false hasContentIssue false

Evaluation of Cycloate Followed by Evening Two-Leaf–Stage Phenmedipham Application in Fresh Market Spinach

Published online by Cambridge University Press:  20 January 2017

Ran N. Lati*
Affiliation:
University of California, Davis, Department of Plant Sciences, 1636 East Alisal, Salinas, CA 93905
Beiquan Mou
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, 1636 East Alisal Street, Salinas, CA 93905
John S. Rachuy
Affiliation:
University of California, Davis, Department of Plant Sciences, 1636 East Alisal, Salinas, CA 93905
Steven A. Fennimore
Affiliation:
University of California, Davis, Department of Plant Sciences, 1636 East Alisal, Salinas, CA 93905
*
Corresponding author's E-mail: ranlati@gmail.com.

Abstract

Fresh market spinach has one primary herbicide, cycloate, which does not control all weeds. Previous studies demonstrated that cycloate PRE followed by (fb) phenmedipham at the four-leaf spinach stage is a safe and effective treatment. However, this treatment is not useful for the main growing season of fresh spinach due to its short crop cycle and the 21-d preharvest interval requirement of phenmedipham. This study evaluates the potential to use the combination of cycloate PRE fb phenmedipham on two-leaf spinach. Greenhouse and field studies were conducted in 2014 using three spinach varieties with low (‘Nordic' and ‘Sardinia') and high (‘Regal') tolerance to phenmedipham. Greenhouse studies revealed that phenmedipham at 90 g ai ha−1 was safe to Regal when applied at the two-leaf stage. Sardinia was more susceptible to phenmedipham injury under high (310 W m−2) light conditions than low (258 W m−2) light conditions. Impact of time of day on phenmedipham safety was evaluated in the field: day-long exposure to high light intensity following morning applications vs. evening applications fb exposure to low light intensity. Injury estimations taken 3 d after treatment (DAT) were lower for evening than for morning applications. Nonetheless, injury 11 DAT and spinach yield evaluations found no differences between morning and evening applications. Subsequently, cycloate (1,700 g ha−1) PRE fb phenmedipham (90 and 180 g ha−1) applied in the evening at the two-leaf stage was evaluated. A reference treatment was cycloate PRE fb phenmedipham (270 g ha−1) at the four-leaf stage. Treatments with cycloate fb two-leaf phenmedipham at 90 and 180 g ha−1 were safe to spinach and improved weed control compared to cycloate alone. Cycloate fb 180 g ha−1 phenmedipham at the two-leaf stage reduced weed biomass by 88% compared to cycloate alone. This level of weed control was similar to the reference treatment. Results here show that phenmedipham applied at the two-leaf stage is safe to fresh market spinach and it has the potential to be used during most of the fresh spinach growing season.

El mercado de espinaca fresca tiene un sólo herbicida primario, cycloate, el cual no controla a todas las malezas. Estudios previos demostraron que cycloate PRE seguido por (fb) phenmedipham en el estadio de cuatro hojas de la espinaca es un tratamiento seguro y efectivo. Sin embargo, este tratamiento no es útil para la principal temporada de crecimiento de la espinaca fresca, debido a su corto ciclo de producción, y al requisito para phenmedipham de un intervalo de aplicación de 21 d antes de la cosecha. Este estudio evalúa el potencial para el uso de la combinación de cycloate PRE fb phenmedipham en espinaca con dos hojas. Estudios de invernadero y estudios de campo fueron realizados en 2014 usando tres variedades de espinacas con baja (‘Nordic' y ‘Sardinia') y alta (‘Regal') tolerancia a phenmedipham. Los estudios de invernadero revelaron que phenmedipham a 90 g ai ha−1 fue seguro en Regal cuando se aplicó en el estadio de dos hojas. Sardinia fue más susceptible al daño del phenmedipham en condiciones de luz alta (310 W m−2) que en condiciones de luz baja (258 W m−2). El impacto del momento durante el día de la aplicación en la seguridad de phenmedipham fue evaluado en el campo: exposición durante todo el día a alta intensidad de luz seguida de aplicaciones en la mañana vs. aplicaciones al atardecer fb de exposición a baja intensidad de luz. Las estimaciones de daño tomadas 3 d después del tratamiento (DAT) fueron menores para aplicaciones al atardecer que en la mañana. Sin embargo, las evaluaciones del daño 11 DAT y el rendimiento de la espinaca no fueron diferentes entre las aplicaciones en la mañana y al atardecer. Subsecuentemente, se evaluó la aplicación de cycloate (1,700 g ha−1) PRE fb phenmedipham (90 y 180 g ha−1) al atardecer en el estadio de dos hojas. Un tratamiento de referencia fue cycloate PRE fb phenmedipham (270 g ha−1) en el estadio de cuatro hojas. Los tratamientos con cycloate fb phenmedipham en el estadio de dos hojas a 90 y 180 g ha−1 fueron seguros en la espinaca y mejoraron el control de malezas al compararse con cycloate solo. Cycloate fb 180 g ha−1 de phenmedipham en el estadio de dos hojas redujo la biomasa de las malezas en 88% al compararse con cycloate solo. Este nivel de control de malezas fue similar al tratamiento de referencia. Estos resultados muestran que phenmedipham aplicado en el estadio de dos hojas es seguro para la producción de espinaca para mercado fresco y tiene el potencial de ser usado durante la mayoría de la temporada de crecimiento de espinaca fresca.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: W. Carroll Johnson III, USDA-ARS.

References

Literature Cited

Abbaspoor, M, Streibig, JC (2007) Monitoring the efficacy and metabolism of phenylcarbamates in sugar beet and black nightshade by chlorophyll fluorescence parameters. Pest Manag Sci 63:576585 Google Scholar
Anonymous (2015) Spin-Aid H Specimen Label. http://www.agrian.com/labelcenter/results.cfm. Accessed May 9, 2015Google Scholar
Brain, RA, Hoberg, J, Hosmer, AJ, Wall, SB (2012) Influence of light intensity on the toxicity of atrazine to the submerged freshwater aquatic macrophyte Elodea canadensis . Ecotox Environ Safe 79:5561 Google Scholar
[CADPR] California Department of Pesticide Regulation (2013) Summary of Pesticide Use Report Data 2011. http://www.cdpr.ca.gov/docs/pur11rep/comrpt11.pdf. Accessed January 11, 2014Google Scholar
[CIMIS] California Irrigation Management Information System (2015) CIMIS Station Reports. http://wwwcimis.water.ca.gov/. Accessed February 14, 2015Google Scholar
Correll, JC, Bluhm, BH, Feng, C, Lamour, K, du Toit, LJ, Koike, ST (2011) Spinach: better management of downy mildew and white rust through genomics. Eur J Plant Pathol 129:193205 Google Scholar
Davies, HM, Merydith, A, Mende-Muller, L (1990) Metabolic detoxification of phenmedipham in leaf tissue of tolerant and susceptible species. Weed Sci 38:206214 Google Scholar
Fennimore, SA, Doohan, DJ (2008) The challenges of specialty crop weed control, future directions. Weed Technol 22:364372 Google Scholar
Fennimore, SA, Smith, RF, LeStrange, M (2014) Herbicide-resistant weeds unlikely in vegetable crops. Calif Agric 68:150151 Google Scholar
Fennimore, SA, Smith, RF, McGiffen, ME Jr. (2001) Weed management in fresh market spinach (Spinacia oleracea) with S-metolachlor. Weed Technol 15:511516 Google Scholar
Fufezan, C, Rutherford, AW, Liszkya, AK (2002) Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 532:407410 Google Scholar
Hess, FD (2000) Light-dependent herbicides: an overview. Weed Sci 48:160170 Google Scholar
Koike, ST, Cahn, M, Cantwell, M, Fennimore, SF, LeStrange, M, Natwick, E, Smith, RF, Takele, E (2011) Spinach Production in California. University of California, Vegetable Research and Information Center. http://anrcatalog.ucdavis.edu/pdf/7212.pdf. Accessed May 26, 2015Google Scholar
Lati RN, Rachuy JS, Fennimore SA (2015) Weed management in fresh market spinach (Spinacia oleracea) with phenmedipham and cycloate. Weed Technol 29:101107 Google Scholar
LeStrange, M, Koike, S, Valencia, J, Chaney, WE (2013) Spinach Production in California. http://ucanr.edu/repository/fileaccess.cfm?article=54021&p=%20PUIVXP&CFID=6609474&CFTOKEN=39025186. Accessed September 20, 2015Google Scholar
Slaughter, DC, Giles, DK, Fennimore, SA, Smith, RF (2008) Multispectral machine vision identification of lettuce and weed seedlings for automated weed control. Weed Technol 22:378384 Google Scholar
Smith, RF, LeStrange, M, Fennimore, SA (2015) Integrated Weed Control in Spinach. University of California, Pest Management Guidelines. http://www.ipm.ucdavis.edu/PMG/r732700111.html. Accessed May 25, 2015Google Scholar
Stewart, CL, Nurse, RE, Sikkema, PH (2009) Time of day impacts postemergence weed control in corn. Weed Technol 23:346355 Google Scholar
Starke, RJ, Renner, KA (1996) Velvetleaf (Abutilon theophrasti) and sugarbeet (Beta vulgaris) response to triflusulfuron and desmedipham plus phenmedipham. Weed Technol 10:121126 Google Scholar
Stopps, GJ, Nurse, RE, Sikkema, PH (2013) The effect of time of day on the activity of postemergence soybean herbicides. Weed Technol 27:690695 Google Scholar
Takele, E (2013) Spinach Production: Sample Costs and Profitability Analysis. http://anrcatalog.ucdavis.edu/pdf/8032.pdf. Accessed December 18, 2013Google Scholar
[USDA] U.S. Department of Agriculture. (2013) Vegetables: 2012 Summary. http://usda.mannlib.cornell.edu.80/usda/. Accessed November 11, 2013Google Scholar
[WSSA] Weed Science Society of America (2014) Phenmedipham. Pages 348349 in Shaner, DLed. Herbicide Handbook. 10th edn. Lawrence, KS: Weed Science Society of America Google Scholar