Skip to main content Accessibility help
×
Home

Effect of Planting Depth and Isoxaflutole Rate on Corn Injury in Nebraska

  • Gail A. Wicks (a1), Stevan Z. Knezevic (a1), Mark Bernards (a1), Robert G. Wilson (a1), Robert N. Klein (a1) and Alex R. Martin (a1)...

Abstract

Field experiments were conducted at five sites in Nebraska in 2000 and 2001 to determine the effect of planting depth and isoxaflutole rate on the response of an isoxaflutole-sensitive corn hybrid, ‘Pioneer 33-G’ across variable environments. Corn was planted at depths of 2.5 and 5.0 cm, and isoxaflutole was applied PRE at the recommended (1×) and twice the recommended (2×) rate. The effects of planting depth and herbicide rate on injury varied considerably across site–years. When injury was evident, it was generally greater at the high rate of isoxaflutole (2×) and at the shallow planting depth (2.5 cm). In most site–years, corn recovered from early season injury, and yields were not reduced, except at Scottsbluff, NE, and North Platte, NE, where soils were lower in organic matter and higher in pH. Isoxaflutole rates should be carefully selected for soils with low organic matter and high pH.

Copyright

Corresponding author

Corresponding author's E-mail: sknezevic2@unl.edu

References

Hide All
Anonymous 2003. Corn: Crop Observations and Recommendation Network. Columbus, OH Ohio State University Extension Service 5 p. http://www.ag.ohio-state.edu/ohioline/b472/corn.html.
Burnside, O. C., Wicks, G. A., and Carlson, D. R. 1980. Control of weeds in an oat (Avena sativa)-soybean (Glycine max) ecofarming rotation. Weed Sci. 28:4650.
Elder, J. A. 1969. Soils of Nebraska. Lincoln, NE Conservation and Survey Division, University of Nebraska. 60.
Elder, J. and Dooha, D. J. 2005. Response of five vegetable crops to isoxaflutole soil residues. Weed Technol. 9:391396.
Geier, P. W. and Stahlman, P. W. 1997. Efficacy of isoxaflutole alone and in combinations in corn. North Cent. Weed Sci. Soc. 52:81.
Grichar, W. J., Besler, B. A., and Palrang, D. T. 2005. Flufenacet and isoxaflutole combinations for weed control and corn (Zea mays) tolerance. Weed Technol. 19:891896.
Klein, R. N., Wicks, G. A., Wilson, R. G., Martin, A. R., Roeth, F. W., and Knezevic, S. 1999. Factors affecting isoxaflutole injury to corn in Nebraska: application. Proc. N. Cent. Weed Sci. Soc. 54:8283.
Knezevic, S. Z., Sikkema, P. H., Tardif, F., Hamill, A. S., Chandler, K., and Swanton, C. J. 1998. Biologically effective dose and selectivity of RPA 201772 (isoxaflutole) for preemergence weed control in corn. Weed Technol. 12:670676.
Luscombe, B. M., Pallett, K. E., Loubiere, P., Millet, J. C., Melgarejo, J., and Varbel, T. E. 1995. RPA 201772: a novel herbicide for broadleaf and grass weed control in maize and sugarcane. Brighton Crop Prot. Conf. 2:3542.
Nelson, E. A. and Penner, D. 2005. Sensitivity of selected crops to isoxaflutole in soil and irrigation water. Weed Technol. 19:659663.
O'Sullivan, J., Thomas, R. J., and Sikkema, P. 2001. Sweet corn (Zea mays) cultivar sensitivity to RPA 201772. Weed Technol. 15:332336.
SAS 1996. SAS System Windows: Release 6.12. Cary, NC SAS Institute. 955.
Simmons, T. J. and Kells, J. J. 2003. Variation and inheritance of isoxaflutole tolerance in corn (Zea mays). Weed Technol. 17:177180.
Steckel, L. E., Simmons, F. W., and Sprague, C. L. 2003. Soil factor effects on tolerance of two corn (Zea mays) hybrids to isoxaflutole plus flufenacet. Weed Technol. 17:599604.
Sprague, C. L., Kells, J. J., and Penner, D. 1999. Weed control and corn (Zea mays) tolerance from soil-applied RPA 201772. Weed Technol. 13:713725.
Taylor-Lovell, S. and Wax, L. M. 2001. Weed control in field corn with RPA 201772 combination with atrazine and s-metolachlor. Weed Technol. 15:249256.
Vrabel, T. E. 1998. Mode of action of isoxaflutole. 1998 Corn Conference. Rancho Mirage, CA.
Wicks, G. A., Klein, R. N., Wilson, R. G., Roeth, F. W., Knezevic, S., and Martin, A. R. 1999. Factors affecting isoxaflutole injury to corn in Nebraska-soils. Proc. North Central Weed Sci. Soc. 54:7381.
Williams, M. M. II, Mortensen, D. A., Martin, A. R., and Marx, D. B. 2001. Within-field soil heterogeneity effects on herbicide-mediated crop injury and weed biomass. Weed Sci. 49:798805.
Wilson, R. G., Wicks, G. A., Klein, R. N., Roeth, F. W., Knezevic, S., and Martin, A. R. 1999. Factors affecting isoxaflutole injury to corn in Nebraska: environment. Proc. North. Cent. Weed Sci. Soc. 4:82.
Winnicki, J. 2000. Planting Depth—Where Yield Begins.1 p. Wellandport, ON, Canada Clark Agri Service, Inc http://www.clarkagriservice.com.

Keywords

Effect of Planting Depth and Isoxaflutole Rate on Corn Injury in Nebraska

  • Gail A. Wicks (a1), Stevan Z. Knezevic (a1), Mark Bernards (a1), Robert G. Wilson (a1), Robert N. Klein (a1) and Alex R. Martin (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed