Skip to main content Accessibility help
×
Home

Effect of Drill-Seeded Soybean Density and Residual Herbicide on Palmer Amaranth (Amaranthus palmeri) Emergence

  • Holden D. Bell (a1), Jason K. Norsworthy (a1) and Robert C. Scott (a2)

Abstract

Palmer amaranth is the most troublesome weed of soybean in the southern United States. Field experiments were conducted at two Arkansas locations to determine the effect of drill-seeded soybean density on Palmer amaranth emergence. Experimental factors were multiple soybean seeding rates planted on a 19-cm-wide row spacing and the presence or absence of a PRE residual herbicide (flumioxazin plus pyroxasulfone). Soybean groundcover was measured throughout the growing season and daily soil temperature was recorded in selected soybean densities. In the absence of a PRE residual herbicide, at least a 1.7-fold reduction in Palmer amaranth emergence occurred when soybean were present. Differences in Palmer amaranth emergence occurred among soybean densities for both locations, suggesting the value of crop canopy in preventing Palmer amaranth emergence in the absence of an effective residual herbicide. In plots treated with the PRE herbicide, no difference in Palmer amaranth emergence occurred among soybean densities, except for the absence of soybean. Achievement of 95% groundcover by soybean reduced daily soil temperature fluctuations, which in turn reduced Palmer amaranth emergence. For both locations, soybean grain yields were greatest at the highest seeding rate (617,500 seed ha−1). In the presence of flumioxazin plus pyroxasulfone applied PRE, greater grain yields occurred compared to the absence of a PRE herbicide at both Fayetteville and Marianna. Based on this research, an effective PRE-applied residual herbicide has more influence on Palmer amaranth emergence than soybean density, and Palmer amaranth germination and emergence are dependent upon daily soil temperature fluctuations, which is a function of soybean density.

Amaranthus palmeri es la maleza más problemática en soja en el sur de los Estados Unidos. Se realizaron experimentos de campo en dos localidades en Arkansas para determinar el efecto de la densidad de la soja en siembra directa sobre la emergencia de A. palmeri. Los factores experimentales fueron múltiples densidades de soja sembrada en hileras espaciadas a 19 cm y la presencia o ausencia de herbicidas residuales aplicados PRE (flumioxazin más pyroxasulfone). La cobertura de la soja fue medida a lo largo de la temporada de crecimiento y la temperatura del suelo fue registrada diariamente en las densidades de soja seleccionadas. En ausencia de un herbicida residual PRE, se dio una reducción en la emergencia de A. palmeri de al menos 1.7 veces cuando la soja estaba presente. Hubo diferencias en la emergencia de A. palmeri entre las densidades de la soja en ambas localidades, lo que sugiere la importancia del dosel del cultivo para prevenir la emergencia de A. palmeri en ausencia de un herbicida residual efectivo. En las parcelas tratadas con herbicidas PRE, no hubo diferencias en la emergencia de A. palmeri entre las densidades de la soja, con excepción del tratamiento sin soja. El llegar a 95% de cobertura del suelo por parte del dosel de la soja redujo las fluctuaciones diarias de temperatura del suelo, lo que resultó en menor emergencia de A. palmeri. En ambas localidades, los rendimientos de la soja fueron mayores con la densidad de siembra más alta (617,500 semillas ha−1). En presencia de flumioxazin más pyroxasulfone aplicados PRE, hubo rendimientos de grano mayores al compararse con tratamientos sin herbicidas PRE en Fayetteville y Marianna. Con base en esta investigación, un herbicida residual PRE efectivo tiene más influencia sobre la emergencia de A. palmeri que la densidad de la soja, y la germinación y emergencia de A. palmeri dependen de las fluctuaciones diarias en la temperatura del suelo, las cuales están en función de la densidad de la soja.

Copyright

Corresponding author

Corresponding author's E-mail: holdendbell@gmail.com.

Footnotes

Hide All

Associate Editor for this paper: Lawrence E. Steckel, University of Tennessee.

Footnotes

References

Hide All
Amador-Ramirez, MD, Wilson, RG, Martin, AR (2002) Effect of in-row cultivation, herbicides, and dry bean canopy on weed seedling emergence. Weed Sci 50:370377
Benvenuti, S (1995) Soil light penetration and dormancy of jimsonweed (Datura stramonium) seeds. Weed Sci 43:389393
Cerrato, ME, Blackmer, AM (1990) Comparison of models for describing corn yield response to nitrogen fertilizer. Agron J 82:138143
Dalley, CD, Kells, JJ, Renner, KA (2004) Effect of glyphosate application timing and row spacing on weed growth in corn (Zea mays) and soybean (Glycine max). Weed Technol 18:177182
DeVore, JD, Norsworthy, JK, Brye, KR (2013) Influence of deep tillage, a rye cover crop, and various soybean production systems on Palmer amaranth emergence in soybean. Weed Technol 27:263270
Edwards, JT, Purcell, LC (2005) Soybean yield and biomass responses to increasing plant population among diverse maturity groups: I. agronomic characteristics. Crop Sci 45:17701777
Edwards, JT, Purcell, LC, Vories, ED (2005) Light interception and yield of short-season maize (Zea mays L.) hybrids in the mid-south. Agron J 97:225234
Guo, P, Al-Khatib, K (2003) Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis). Weed Sci 51:869875
Huarte, HR, Benech Arnold, RL (2003) Understanding mechanisms of reduced annual weed emergence in alfalfa. Weed Sci 51:876885
Jha, P, Norsworthy, JK (2009) Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci 57:644651
Jha, P, Norsworthy, JK, Riley, MB, Bridges, W Jr. (2010) Annual changes in temperature and light requirements for germination of Palmer amaranth (Amaranthus palmeri) seeds retrieved from soil. Weed Sci 58:426432
Leon, RG, Knapp, AD, Owen, MDK (2004) Effect of temperature on the germination of common waterhemp (Amaranthus tuberculatus), giant foxtail (Setaria faberi), and velvetleaf (Abutilon theophrasti). Weed Sci 52:6773
Mahoney, KJ, Shropshire, C, Sikkema, PH (2014) Weed management in conventional- and no-till soybean using flumioxazin/pyroxasulfone. Weed Technol 28:298306
Mohler, CL, Calloway, MB (1992) Effects of tillage and mulch on the emergence and survival of weeds in sweet corn. J Appl Ecol 29:2134
Molin, WT, Hugie, JA, Hirase, K (2004) Prickly sida (Sida spinosa L.) and spurge (Euphorbia hyssopifolia L.) response to wide row and ultra narrow row cotton (Gossypium hirsutum L.) management systems. Weed Biol Manag 4:222229
Norsworthy, JK (2004) Soybean canopy formation effects on pitted morningglory (Ipomoea lacunosa), common cocklebur (Xanthium strumarium), and sicklepod (Senna obtusifolia) emergence. Weed Sci 52:954960
Norsworthy, JK, Jha, P, Bridges, W Jr. (2007) Sicklepod (Senna obtusifolia) survival and fecundity in wide- and narrow-row glyphosate-resistant soybean. Weed Sci 55:252259
Norsworthy, JK, Oliver, LR (2001) Effect of seeding rate of drilled glyphosate-resistant soybean (Glycine max) on seed yield and gross profit margin. Weed Technol 15:284292
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162
Purcell, LC (2000) Soybean canopy coverage and light interception measurements using digital imagery. Crop Sci 40:834837
Purcell, LC, Ball, RA, Reaper, JD, Vories, ED (2002) Radiation use efficiency and biomass production in soybean at different plant population densities. Crop Sci 42:172177
Renner, KA, Mickelson, JA (1997) Weed control using reduced rates of post-emergence herbicides in narrow and wide row soybean. J Prod Agric 10:431437
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DO IV, Eubank, TW, Scott, RC (2013) Assessment of weed management practices and problem weeds in the midsouth United States—soybean: a consultant's perspective. Weed Technol 27:612622
Richardson, MD, Karcher, DE, Purcell, LC (2001) Quantifying turfgrass cover using digital image analysis. Crop Sci 41:18841888
Scott, B, Smith, K (2011) Prevention and control of glyphosate-resistant pigweed in soybean and cotton. University of Arkansas Cooperative Extension Service Printing Services FSA 2152-PD-3-11RV. 4 p
Steckel, LE (2007) The dioecious Amaranthus spp.: here to stay. Weed Technol 21:567570
Steckel, LE, Sprague, CL, Stoller, EW, Wax, LM (2004) Temperature effects on germination of nine Amaranthus species. Weed Sci 52:217221
Thomas, WE, Burke, IC, Spears, JF, Wilcut, JW (2006) Influence of environmental factors on slender amaranth (Amarathus viridis) germination. Weed Sci 54:316320
Ware, GO, Ohki, K, Moon, LC (1982) The Mitscherlich plant growth model for determining critical nutrient deficiency levels. Agron J 74:8891
Webster, TM, Nichols, RL (2012) Changes in the prevalence of weed species in the major agronomic crops of the southern United States: 1994/1995 to 2008/2009. Weed Sci 60:145157
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2010) Palmer amaranth (Amaranthus palmeri) control in soybean with glyphosate and conventional herbicide systems. Weed Technol 24:403410

Keywords

Related content

Powered by UNSILO

Effect of Drill-Seeded Soybean Density and Residual Herbicide on Palmer Amaranth (Amaranthus palmeri) Emergence

  • Holden D. Bell (a1), Jason K. Norsworthy (a1) and Robert C. Scott (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.