Skip to main content Accessibility help
×
×
Home

Distribution of PPX2 Mutations Conferring PPO-Inhibitor Resistance in Palmer Amaranth Populations of Tennessee

  • J. Drake Copeland (a1), Darci A. Giacomini (a2), Patrick J. Tranel (a3), Garret B. Montgomery (a4) and Lawrence E. Steckel (a5)...

Abstract

Protoporphyrinogen IX oxidase (PPO)–inhibiting herbicides (WSSA Group 14) have been used in agronomic row crops for over 50 yr. Broadleaf weeds, including glyphosate-resistant Palmer amaranth, have been controlled by this herbicide site of action PRE and POST. Recently, Palmer amaranth populations were reported resistant to PPO inhibitors in 2011 in Arkansas, in 2015 in Tennessee, and in 2016 in Illinois. Historically, the mechanism for this resistance involves the deletion of a glycine at position 210 (ΔG210) in a PPO enzyme encoded by the PPX2 gene; however, the ΔG210 deletion did not explain all PPO inhibitor–resistant Palmer amaranth in Tennessee populations. Recently, two new mutations within PPX2 (R128G, R128M) that confer resistance to PPO inhibitors were identified in Palmer amaranth. Therefore, research is needed to document the presence and distribution of the three known mutations that confer PPO inhibitor resistance in Tennessee. In 2017, a survey was conducted in 18 fields with Palmer amaranth to determine whether resistance existed and the prevalence of each known mutation in each field. Fomesafen was applied at 265 g ai ha–1 to Palmer amaranth infestations within each field to select for resistant weeds for later analysis. Where resistance was described (70% of surviving plants), the ΔG210 mutation was detected in 47% of resistant plants. The R128G mutation accounted for 42% of resistance, similar to the frequency of the ΔG210 mutation. The R128M mutation was less frequent than the other two mutations, accounting for only 10% of the resistance. All mutations detected in this study were heterozygous. Additionally, no more than one of the three PPX2 mutations were detected in an individual surviving plant. Similar to previous research, about 70% of PPO resistance was accounted for by these three known mutations, leaving about 30% of resistance not characterized in Tennessee populations. Survivors not showing the three known PPO mutations suggest that other resistance mechanisms are present.

Copyright

Corresponding author

*Author for correspondence: Lawrence Steckel, Department of Plant Sciences, University of Tennessee, 605 Airways Boulevard, Jackson, TN 38301. (Email: lsteckel@utk.edu)

References

Hide All
Copeland, JD, Wiggins, M, Steckel, LE (2018) Influence of residual herbicide application rate on PPO-resistant and susceptible Palmer amaranth in Tennessee (Abstract). Proceedings of the 58th Weed Science Society. http://www.wssaabstracts.com/public/54/proceedings.html. Accessed: June 3, 2018
Dayan, FE, Daga, PR, Duke, SO, Lee, RM, Tranel, PJ, Doerksen, RJ (2010) Biochemical and structural consequences of a glycine deletion in the α-8 helix of protoporphyrinogen oxidase. Biochim Biophys Acta 1804:15481556
Doyle, JJ, Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:1115
Giacomini, DA, Umphres, AM, Nie, H, Mueller, TC, Steckel, LE, Young, BG, Scott, RC, Tranel, PJ (2017) Two new PPX2 mutations associated with resistance to PPO-inhibiting herbicides in Amaranthus palmeri . Pest Manag Sci 73:15591563
Heap, I (2018) International survey of herbicide resistant weeds. http://www.weedscience.org Accessed: February 14, 2018
Jabran, K, Chauhan, BS (2018) Non-Chemical Weed Control. 1st edn. London: Academic Press (an imprint of Elsevier Science). 172 p
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60 (sp1):31–62
Patzoldt, WL, Hager, AG, McCormick, JS, Tranel, PJ (2006) A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci USA 103:1232912334
Rousonelos, SL, Lee, RM, Moreira, MS, VanGessel, MJ, Tranel, PJ (2012) Characterization of a common ragweed (Ambrosia artemisiifolia) population resistant to ALS- and PPO-inhibiting herbicides. Weed Sci 60:335344
Salas, RA, Burgos, NR, Tranel, PJ, Singh, S, Glasgow, L, Scott, RC, Nichols, RL (2016) Resistance to PPO-inhibiting herbicide in Palmer amaranth from Arkansas. Pest Manag Sci 72:864869
Salas-Perez, RA, Burgos, NR, Rangani, G, Singh, S, Refatti, JP, Pivetam, L, Tranel, PJ, Mauromoustakos, A, Scott, RC (2017) Frequency of Gly-210 deletion mutation among protoporphyrinogen oxidase inhibitor-resistant Palmer amaranth (Amaranthus palmeri) populations. Weed Sci 65:718731
Schwartz-Lazaro, LM, Norsworthy, JK, Scott, RC, Barber, LT (2017) Resistance of two Arkansas Palmer amaranth populations to multiple herbicide sites of action. Crop Prot 96:158163
Steppig, NR, Mansfield, BC, Haozhen, N, Young, JM, Young, BG (2017) Presence of an alternative mechanism of resistance to PPO-inhibiting herbicides in tall waterhemp populations from Indiana, Illinois, Iowa, Missouri, and Minnesota. Page 63 in Proceedings of the 72nd North Central Weed Science Society
Varanasi, VK, Brabham, C, Norsworthy, JK, Nie, H, Young, BG, Houston, M, Barber, T, Scott, RC (2017) A statewide survey of PPO-inhibitor resistance and the prevalent target-site mechanisms in Palmer amaranth (Amaranthus palmeri) accessions from Arkansas. Weed Sci 68:110
Wiggins, MS, McClure, AM, Hayes, RM, Steckel, LE (2016) Evaluating cover crops and herbicides for glyphosate-resistant Palmer amaranth (Amaranthus palmeri) control in cotton. Weed Technol 30:415422
Wuerffel, RJ, Young, JM, Lee, RM, Tranel, PJ, Lightfoot, DA, Young, BG (2015) Distribution of the ΔG210 protoporphyrinogen oxidase mutation in Illinois waterhemp (Amaranthus rudis Sauer) populations. Weed Sci 63:336345
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed