Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T16:10:12.501Z Has data issue: false hasContentIssue false

Crop Response and Control of Common Purslane (Portulaca oleraceae) and Prostrate Pigweed (Amaranthus blitoides) in Green Onion with Oxyfluorfen

Published online by Cambridge University Press:  20 January 2017

Doug Doohan*
Affiliation:
Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691
Joel Felix
Affiliation:
Oregon State University Malheur Experiment Station, 595 Onion Ave., Ontario, OR 97914
*
Corresponding author's E-mail: Doohan.1@osu.edu

Abstract

Weed management in green onion continues to be a challenge for vegetable growers in Ohio. Field experiments were conducted from 2005 to 2009 to evaluate oxyfluorfen efficacy on common purslane and prostrate pigweed and green onion tolerance when applied POST at 0, 30, 70, 105, and 290 g ai ha−1 approximately 3 wk after planting. No crop injury was observed from any of the herbicide rates, except in 2009 when 209 g ha−1 oxyfluorfen resulted in 10% injury at 7 d after treatment. The transient injury did not reduce green onion yield. Green onion yield ranged from 1.8 to 2.2 kg plot−1 in 2006 and 1.3 to 1.5 kg plot−1 in 2009. In 2007 yield increased linearly from 1.9 to 3.0 kg plot−1 with oxyfluorfen rates of 0 to 105 g ha−1. Common purslane control increased as the rate of oxyfluorfen increased. Application of oxyfluorfen at 70 to 105 g ha−1 provided the best control of common purslane, ranging from 61 to 95% across the years. Similar control results were observed for prostrate pigweed. Prostrate pigweed control with 70 to 105 g ha−1 ranged from 40 to 93% from 2005 to 2009. These results suggest that green onion tolerates oxyfluorfen rates of 70 to 105 g ha−1, and these rates provide common purslane and prostrate pigweed control that growers would find acceptable. Registration of the water-based formulation of oxyfluorfen would provide growers an opportunity to control weeds and reduce the need for hand labor.

El manejo de malezas en cebolla verde o inmadura continúa siendo un reto para los productores de vegetales en Ohio. Se realizaron experimentos de campo desde 2005 a 2009 para evaluar la eficacia de oxyfluorfen en el control de Portulaca oleracea y Amaranthus blitoides y la tolerancia de la cebolla verde, cuando este se aplicó POST a 0, 30, 70, 105, y 290 g ai ha−1 aproximadamente 3 semanas después de la siembra. No se observó daño al cultivo con ninguna de las dosis del herbicida, excepto en 2009 cuando 209 g ha−1 de oxyfluorfen resultaron en 10% de daño 7 d después del tratamiento. El daño transitorio no redujo el rendimiento de la cebolla verde. Los rendimientos estuvieron entre 1.8 y 2.2 kg plot−1 en 2006 y 1.3 a 1.5 kg plot−1 en 2009. En 2007, el rendimiento incrementó en forma lineal desde 1.9 a 3.0 kg plot−1 con las dosis de oxyfluorfen de 0 a 105 g ha−1. El control de P. oleracea incrementó conforme la dosis de oxyfluorfen aumentó. La aplicación de oxyfluorfen de 70 a 105 g ha−1 brindó el mejor control de P. oleracea, el cual varió de 61 a 95% durante los años evaluados. Resultados de control similares se observaron para A. blitoides. El control de esta maleza con 70 a 105 g ha−1 varió entre 40 y 93% del 2005 al 2009. Estos resultados sugieren que la cebolla verde tolera dosis de oxyfluorfen de 70 a 105 g ha−1, y que estas dosis proveen control de P. oleracea y A. blitoides que los productores encontrarían aceptable. El registro para cebolla verde de oxyfluorfen en su formulación basada en agua brindaría a los productores una oportunidad de controlar malezas y reducir la necesidad de deshierba manual.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2011. Goal Tender® herbicide label. Dow AgroSciences Publication No. D02-204-005. Indianapolis, IN : DowAgroSciences LLC. Document1.Google Scholar
Bond, W. and Burston, S. 1996. Timing the removal of weeds from drilled salad onions to prevent crop losses. Crop Prot. 15 :205211.CrossRefGoogle Scholar
Comis, D. 2007. Specialty crops: more vulnerable than you think. Agric. Res. 55 :46.Google Scholar
Doohan, D. and Koch, T. 2008. Green Onions—Weed Control and Crop Tolerance with Goaltender and Prowl H2O. Weed Management in Horticultural Crops. Research Results 2008. Horticulture and Crop Science Series No. 762. Pp. 6365.Google Scholar
Elder, J. W. and Lal, R. 2008. Tillage effects on physical properties of agricultural organic soils of northcentral Ohio. Soil Tillage Res. 98 :208210.Google Scholar
Ghosheh, H. Z. 2004. Single herbicide treatments for control of broadleaved weeds in onion (Allium cepa). Crop Prot. 23 :539542.Google Scholar
IR-4 Project. 2011. General Search of Food Use Request Database. http://ir4.rutgers.edu/FoodUse/food_Use2.cfm?PRnum=03574. Accessed: October 28, 2011.Google Scholar
Precheur, R. J., Welty, C., Doohan, D., and Miller, S. (eds.). 2011. Ohio Vegetable Production Guide. OSUE Bulletin 672. Pages 285 p.Google Scholar
Norsworthy, J. K., Smith, J. P., and Meister, C. 2007. Tolerance of direct-seeded green onions to herbicides applied before or after crop emergence. Weed Technol. 21 :119123.Google Scholar
SAS. 2008. SAS/STAT® 9.2 User's Guide. Cary, NC : SAS Institute Inc.Google Scholar
Westra, P., Pearson, C. H., and Ristau, R. 1990. Control of Venice mallow (Hibiscus trionum) in corn (Zea mays) and onions (Allium cepa). Weed Technol. 4 :500504.Google Scholar