Skip to main content Accessibility help
×
Home

Carryover of Common Corn and Soybean Herbicides to Various Cover Crop Species

  • Cody D. Cornelius (a1) and Kevin W. Bradley (a1)

Abstract

The recent interest in cover crops as component of Midwest corn and soybean production systems has led to the need for additional research, including the effects of residual corn and soybean herbicide treatments on fall cover crop establishment. Field studies were conducted in 2013, 2014, and 2015 in Columbia, Missouri to investigate the effects of common residual herbicides applied in corn and soybean on establishment of winter wheat, tillage radish, cereal rye, crimson clover, winter oat, Austrian winter pea, Italian ryegrass, and hairy vetch. Cover crops were evaluated for stand and biomass reduction 28 d after emergence (DAE). Rainfall from herbicide application to cover crop seeding date was much greater in 2014 and 2015, which resulted in less carryover in these years compared to 2013. When averaged across all herbicides evaluated in these experiments, the general order of sensitivity of cover crops to herbicide carryover, from greatest to least was Austrian winter pea=crimson clover>oilseed radish>Italian ryegrass>hairy vetch>wheat >winter oat>cereal rye. Cereal rye had the fewest instances of biomass or stand reduction with only four out of the 27 herbicides adversely effecting establishment. Pyroxasulfone consistently reduced Italian ryegrass and winter oat biomass at least 67% in both the corn and soybean experiments. In the soybean experiment, imazethapyr- and fomesafen-containing products resulted in severe stand and biomass reduction in both years while flumetsulam-containing products resulted in the greatest carryover symptoms in the corn experiment. Results from these experiments suggest that several commonly used corn and soybean herbicides have the potential to hinder cover crop establishment, but the severity of damage will depend on weather, cover crop species, and the specific herbicide combination.

El reciente interés en el uso de cultivos de cobertura como componente de los sistemas de producción de maíz y soja en el medio oeste ha llevado a la necesidad de realizar investigación adicional que incluya los efectos de los tratamientos de herbicidas residuales en maíz y soja sobre el establecimiento de cultivos de cobertura en el otoño. Estudios de campo fueron realizados en 2013, 2014, y 2015 en Columbia, Missouri, para investigar los efectos de herbicidas residuales comunes aplicados en maíz y soja sobre el establecimiento de trigo de invierno, rábano, centeno, Trifolium incarnatum, avena de invierno, guisante, Lolium perenne, y Vicia villosa. Los cultivos de cobertura fueron evaluados por reducciones en el establecimiento y la biomasa 28 d después de la emergencia(DAE). La precipitación desde la aplicación del herbicida hasta la siembra del cultivo de cobertura fue mucho mayor en 2014 y 2015, lo que resultó en menos efecto residual de los herbicidas en estos años al compararse con 2013. Cuando se promediaron todos los herbicidas evaluados en estos experimentos, el orden general de sensibilidad de los cultivos de cobertura a los residuos de herbicidas de mayor a menor fue guisantes = T. incarnatum > rábano > L. perenne > V. villosa > trigo > avena de invierno > centeno. El centeno tuvo el menor número de instancias en que se redujo la biomasa o el número de plantas establecidas con solamente cuatro de 27 herbicidas afectando negativamente el establecimiento. Pyroxasulfone redujo consistentemente la biomasa de L. perenne y avena de invierno al menos 67% en los experimentos de maíz y soja. En el experimento de soja, productos que contenían imazethapyr y fomesafen resultaron en reducciones severas en el establecimiento y la biomasa en ambos años mientras que productos conteniendo flumetsulam resultaron en los mayores síntomas de daño por residuos de los herbicidas en el experimento de maíz. Los resultados de estos experimentos sugieren que varios herbicidas comúnmente usados en maíz y soja tienen el potencial de reducir el establecimiento de cultivos de cobertura, pero la severidad del daño dependerá del clima, la especie de cultivo de cobertura, y la combinación específica de herbicidas.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Carryover of Common Corn and Soybean Herbicides to Various Cover Crop Species
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Carryover of Common Corn and Soybean Herbicides to Various Cover Crop Species
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Carryover of Common Corn and Soybean Herbicides to Various Cover Crop Species
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author’s E-mail: bradleyke@missouri.edu

Footnotes

Hide All

Associate Editor for this paper: Lawrence E. Steckel, University of Tennessee

Footnotes

References

Hide All
Anonymous. (2016a) Accent® Q herbicide product label. http://www.cdms.net/ldat/ld8RQ004.pdf. Accessed March 14, 2016
Anonymous. (2016b) Flexstar® herbicide product label. http://www.cdms.net/ldat/ld6BM004.pdf. Accessed March 14, 2016
Anonymous. (2016c) Python® herbicide product label. http://www.cdms.net/ldat/ld0KP016.pdf. Accessed March 14, 2016
Anonymous. (2016d) Sencor® 75DF herbicide product label. http://www.cdms.net/ldat/ld86D003.pdf. Accessed March 14, 2016
Anonymous. (2016e) Valor® SX herbicide product label. http://www.cdms.net/ldat/ld3LL001.pdf. Accessed March 14, 2016
Anonymous. (2016f) Warrant® herbicide product label. http://www.cdms.net/ldat/ld9KA005.pdf. Accessed March 14, 2016
Bauer, U, Calvet, R (1999) Fate of soil applied herbicides: experimental data and predictors of dissipation kinetics. J Environ Qual 28:17651777
Bond, JA, Eubank, TW, Bond, RC, Golden, BR, Edwards, HM (2014) Glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) control with fall-applied residual herbicides. Weed Technol 28:361370
Cantwell, JR, Liebl, RA, Slife, FW (1989) Biodegradation characteristics of imazaquin and imazethapyr. Weed Sci 37:815819
Curran, WS (2001) Persistence of herbicides in soils, PennState Extension. http://extension.psu.edu/pests/weeds/control/persistance-of-herbicides-in-soil. Accessed June 21, 2015
Curran, WS, Lingenfelter, DD, Wagoner, P (1996) Cover crops for conservation tillage systems, Pennsylvania State University. http://extension.psu.edu/plants/crops/soil-management/conservation-tillage/cover-crops-for-conservation-tillage-systems. Accessed December 20, 2015
Hager, AG, Wax, LM, Bollero, GA, Stoller, EW (2003) Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol 17:1420
Hanson, BD, Thill, DC (2001) Effects of imazethapyr and pendimethalin on lentil (Lens culinaris), pea (Pisum sativum), and a subsequent winter wheat (Triticum aestivum) crop. Weed Technol 15:190194
Heap I (2016) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/summary/home.aspx. Accessed December 1, 2016
Kells, JJ, Leep, RH, Tesar, MB, Leavitt, RA, Cudnohufsky, J (1990) Effect of atrazine and tillage on alfalfa (Medicago sativa) establishment in corn (Zea mays)-alfalfa rotation. Weed Technol 4:360365
Kerr, GW, Stahlman, PW, Dille, JA (2004) Soil pH and cation exchange capacity affects sunflower tolerance to sulfentrazone. Weed Technol 18:243247
Kuo, S, Sainju, UM, Jellum, EJ (1997) Winter cover cropping influence on nitrogen in soil. Soil Sci Soc Am J 61:13921399
Locke, MA, Bryson, CT (1997) Herbicide-soil interactions in reduced tillage and plant residue management systems. Weed Sci 45:307320
Loux, MM, Reese, KD (1993) Effect of soil type and pH on persistence and carryover of imidazolinone herbicides. Weed Technol 7:452458
Mueller, TC, Boswell, BW, Mueller, SS, Steckel, LE (2014) Dissipation of fomesafen, saflufenacil, sulfentrazone, and flumioxazin from a Tennessee soil under field conditions. Weed Sci 62:664671
Riggins, CW, Tranel, PJ (2012) Will the Amaranthus tuberculatus resistance mechanism to PPO-inhibiting herbicides evolve in other Amaranthus species? Int J Agron 2012:17
Sainju, UM, Singh, BP (1997) Winter cover crops for sustainable agriculture systems: influence on soil properties, water quality, and crop yields. Hort Sci 32:2128
Shaner, DL, Jachetta, JJ, Senseman, S, Burke, I, Hanson, B, Jugulam, M, Tan, S, Reynolds, J, Strek, H, McAllister, R, Green, J, Glenn, B, Turner, P, Pawlak, J (2014) Herbicide Handbook. 10th edn. Lawrence, KS: Weed Science Society of America. Pp 232, 344
Smith, DH, Legleiter, TR, Bosak, EJ, Johnson, W, Davis, VM (2015) Cover crop establishment issues following corn and soybean in the upper Midwest. Abstract 174 in Proceedings of the 2015 Weed Science Society of America annual meeting. Lexington, KY: Weed Science Society of America
[SARE] Sustainable Agriculture Research and Education. (2014) Cover Crop Survey. http://www.sare.org/Learning-Center/From-the-Field/North-Central-SARE-From-the-Field/2013-14-Cover-Crops-Survey-Analysis. Accessed March 20, 2015
Tharp, BE, Kells, JJ (2000) Effect of soil applied herbicides on establishment of cover crop species. Weed Technol 14:596601
[USDA] US Department of Agriculture. (2015) Agricultural Resource Management Survey, Crop Production Practices for Soybeans. http://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/tailored-reports-farm-structure-and-finance.aspx. Accessed August 17, 2015
Walsh, JD, DeFelice, MS, Sims, BD (1993a) Impact of tillage on soybean herbicide carryover to grass and legume forage crops in Missouri. Weed Sci 41:144149
Walsh, JD, DeFelice, MS, Sims, BD (1993b) Soybean (Glycine max) herbicide carryover to grain and fiber crops. Weed Technol 7:625632
Webster, TM, Scully, BT, Grey, TL, Culpepper, AS (2013) Winter cover crops influence Amaranthus palmeri establishment. Crop Prot 52:130135
Westra, EP, Shaner, DL, Westra, PH, Chapman, PL (2014) Dissipation and leaching of pyroxasulfone and S-metolachlor. Weed Technol 28:7281
Zimdahl, RL (2007) Fundamentals of Weed Science. 3rd edn. San Diego, CA: Elsevier. Pp 477481
Zimdahl, RL, Catizone, P, Butcher, AC (1984) Degradation of pendimethalin in soil. Weed Sci 32:408412

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed